nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 04 v.44 53-62
纳米二氧化锰磨料对集成电路钨化学机械抛光的影响
基金项目(Foundation): 国家自然科学基金(62104087); 中国博士后基金(2024M751207)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.04.008
中文作者单位:

河北工业大学电子信息工程学院;北方集成电路技术创新中心(北京)有限公司;河北工业大学创新研究院(石家庄);江苏海洋大学电子工程学院;

摘要(Abstract):

[目的]采用传统磨料对集成电路钨(W)化学机械抛光(CMP)时往往难以兼顾高去除速率与良好的表面品质,故提出一种基于纳米二氧化锰(MnO_2)磨料的酸性抛光液。[方法]通过实验与理论计算相结合,研究了MnO_2在钨CMP中的多重作用机制──作为磨料、氧化剂及类芬顿反应催化剂。通过X射线光电子能谱(XPS)、电化学测试及热力学计算,验证了MnO_2与W之间发生氧化还原反应的可能性。此外,还通过密度泛函理论(DFT)和Fukui函数计算分析了MnO_2的反应活性位点及电子转移特性。[结果]抛光液中仅添加0.8%(质量分数)MnO_2就可使W的去除速率达到4 753?/min,与采用高浓度硅溶胶(Si O_2)磨料时的去除速率相当,同时表面粗糙度(Sq=0.806 nm)比后者低27.7%。理论计算显示,MnO_2的LUMO(最低未占据分子轨道)能级(-6.057 eV)和电子转移分数(Δn=-3.97)赋予其优于H_2O_2和羟基自由基的氧化能力。[结论]MnO_2磨料在钨CMP中实现了化学作用与机械作用间的良好协同,这为高性能抛光液的开发提供了新思路。

关键词(KeyWords): 钨;化学机械抛光;二氧化锰;去除速率;表面品质
参考文献

[1]LIU H Q,YANG T,ZHANG Y,et al.Effect of grain size on tungsten material removal rate during chemical mechanical planarization process[J].Materials Science in Semiconductor Processing,2024,181:108618.

[2]CHOI S H,KREIDER M E,NIELANDER A C,et al.Origins of wearinduced tungsten corrosion defects in semiconductor manufacturing during tungsten chemical mechanical polishing[J].Applied Surface Science,2022,598:153767.

[3]KRISHNAN M,NALASKOWSKI J W,COOK L M.Chemical mechanical planarization:slurry chemistry,materials,and mechanisms[J].Chemical Reviews,2010,110(1):178-204.

[4]SEO Y J,KIM N H,LEE W S.Chemical mechanical polishing and electrochemical characteristics of tungsten using mixed oxidizers with hydrogen peroxide and ferric nitrate[J].Materials Letters,2006,60(9/10):1192-1197.

[5]LEE K C,SEO J.Suppression of dissolution rate via coordination complex in tungsten chemical mechanical planarization[J].Applied Sciences,2022,12(3):1227.

[6]CHEN R L,ZHOU P J,LI H.Effect of rotation of abrasives on material removal in chemical mechanical polishing using a proposed three-body model:molecular dynamics simulation[J].Tribology International,2024,196:109716.

[7]SEO B E,BAE Y J,KIM I S,et al.Influence of scavenger on abrasive stability enhancement and chemical and mechanical properties for tungsten-film chemical-mechanical-planarization[J].ECS Journal of Solid State Science and Technology,2020,9(6):065001.

[8]LIM J,H PARK J H,PARK J G,et al.Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance[J].Applied Surface Science,2013,282:512-517.

[9]HAINS A W,LONG K,GRUMBINE S,et al.CMP composition including a novel abrasive:US17217097[P].2024-05-09.

[10]TESTA F,COETSIER C,CARRETIER E,et al.Recycling a slurry for reuse in chemical mechanical planarization of tungsten wafer:effect of chemical adjustments and comparison between static and dynamic experiments[J].Microelectronic Engineering,2014,113:114-122.

[11]KIM K,SEO J,LEE M,et al.Highly dispersed Fe3+-substituted colloidal silica nanoparticles for defect-free tungsten chemical mechanical planarization[J].ECS Journal of Solid State Science and Technology,2017,6(7):405-409.

[12]SEO J,MOON J,KIM Y,et al.Synergistic effect of mixed particle size on W CMP process:optimization using experimental design[J].ECSJournal of Solid State Science and Technology,2016,6(1):42-44.

[13]SUN S,LEE K C,LEE G,et al.Fe-substituted silica via lattice dissolution-reprecipitation replacement for tungsten chemical mechanical planarization[J].Journal of Industrial and Engineering Chemistry,2022,111:219-225.

[14]PODDAR K M,RYU H,YERRIBOINA P N,et al.Nanocatalystinduced hydroxyl radical (·OH) slurry for tungsten CMP for nextgeneration semiconductor processing[J].Journal of Materials Science,2020,55(8):3450-3461.

[15]ZHAO P P,YIN T,DOI T,et al.Effect of Mn-based slurries on chemical mechanical polishing of Si C substrates[J].ECS Journal of Solid State Science and Technology,2022,11(7):074002.

[16]SCHUMANN W.Minerals of the World[M].New York:Sterling Publishing,2008.

[17]QIN W T,DONALDSON S,ROGERS D,et al.Via resistance increase accelerated by thermal stress[J].Microelectronics Reliability,2021,120:114102.

[18]EMEJE K O,AGHEMENLOH E,ONATE C A.Analytical determination of enthalpy,heat capacity and Gibbs free energy for nitrogen and iodine[J].Chemical Physics Letters,2024,844:141271.

[19]MEHMOOD H,KHALID M,HAROON M,et al.Synthesis,characterization and DFT calculated properties of electron-rich hydrazinylthiazoles:experimental and computational synergy[J].Journal of Molecular Structure,2021,1245:131043.

[20]CARVALHO J O,NETO J G O,FILHO J G S,et al.Physicochemical properties calculated using DFT method and changes of 5-methyluridine hemihydrate crystals at high temperatures[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,281:121594.

[21]BABAEI S,NIAD M.Chemical reactivity descriptors as a tool of prediction in the synthesis of sandwich type polyoxometalate organicinorganic hybrid compounds[J].Polyhedron,2020,188.

[22]PéREZ P,DOMINGO R L,DUQUE-NORE?A M,et al.A condensedto-atom nucleophilicity index.An application to the director effects on the electrophilic aromatic substitutions[J].Journal of Molecular Structure:THEOCHEM,2009,895(1/2/3):86-91.

[23]TSUNEDA T,SONG J W,SUZUKI S,et al.On Koopmans’theorem in density functional theory[J].The Journal of Chemical Physics,2010,133(17):174101.

[24]OLáH J,ALSENOY C V,SANNIGRAHI A B.Condensed Fukui functions derived from stockholder charges:assessment of their performance as local reactivity descriptors[J].The Journal of Physical Chemistry A,2002,106(15):3885-3890.

[25]SEO E B,BAE J Y,KIM S I,et al.Interfacial chemical and mechanical reactions between tungsten-film and nano-scale colloidal zirconia abrasives for chemical-mechanical-planarization[J].ECS Journal of Solid State Science and Technology,2020,9(5):054001.

[26]HAYNES W M.CRC Handbook of Chemistry and Physics[M].97th ed.Boca Raton:CRC Press,2016.

[27]ZHAN C,LIAN C,ZHANG Y,et al.Computational insights into materials and interfaces for capacitive energy storage[J].Advanced Science,2017,4(7):1700059.

[28]WANG H B,HAO Y L,CHEN S H,et al.DFT study of imidazoles adsorption on the grain boundary of Cu(100) surface[J].Corrosion Science,2018,137:33-42.

[29]张余.一些二维半导体材料电/磁性质及应力调控的理论研究[D].重庆:重庆大学,2018.ZHANG Y.Theoretical study of electronic and magnetic properties and strain modulation effect on some 2D semiconductor materials[D].Chongqing:Chongqing University,2018.

[30]ZHANG X,ZHOU F,ZHANG S,et al.Engineering Mo S2 Basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization[J].Advanced Science,2019,6(10):1900090.

[31]AHMED M S M,MEKKY A E M,SANAD A M H.Regioselective[3+2]cycloaddition synthesis and theoretical calculations of new chromene-pyrazole hybrids:a DFT-based Parr Function,Fukui Function,local reactivity indexes,and MEP analysis[J].Journal of Molecular Structure,2022,1267:133583.

[32]LIM G,LEE J H,KIM J,et al.Effects of oxidants on the removal of tungsten in CMP process[J].Wear,2004,257(9/10):863-868.

[33]YU X,SONG Y X,TANG A.Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery[J].Journal of Power Sources,2021,507:230295.

[34]CHEN W T,HU F F,GAO Q,et al.Tumor acidification and GSHdepletion by bimetallic composite nanoparticles for enhanced chemodynamic therapy of TNBC[J].Journal of Nanobiotechnology,2024,22:98.

[35]JIA C Y,GUO Y X,WU F G.Chemodynamic therapy via Fenton and Fenton-like nanomaterials:strategies and recent advances[J].Small,2021,18(6):2103868.

[36]GAO F L,SUN M M,ZHANG J,et al.Fenton-like reaction and glutathione depletion by chiral manganese dioxide nanoparticles for enhanced chemodynamic therapy and chemotherapy[J].Journal of Colloid and Interface Science,2022,616:369-378.

基本信息:

DOI:10.19289/j.1004-227x.2025.04.008

中图分类号:TN405

引用信息:

[1]赵悦琦,王胜利,杨云点等.纳米二氧化锰磨料对集成电路钨化学机械抛光的影响[J].电镀与涂饰,2025,44(04):53-62.DOI:10.19289/j.1004-227x.2025.04.008.

基金信息:

国家自然科学基金(62104087); 中国博士后基金(2024M751207)

检 索 高级检索