nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.44 138-146
电芬顿阴阳极材料制备与供电方式改进的研究进展
基金项目(Foundation): 湖南省自然科学基金项目(2025JJ80338); 教育部产学合作协同育人项目(2411011832); 湖南汽车工程职业大学校级重点课题(HQZYKY2023A10)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.09.018
摘要:

[目的]电镀、涂料等工业废水中难降解有机物处理已成为环保技术研究的热点。电芬顿具有氧化能力强、处理速度快、条件易于控制等优点,是一种具有发展潜力和工程化应用前景的废水处理电化学高级氧化技术。[方法]概述了电芬顿方法的分类及其特性,综述了电芬顿体系中阴极材料、阳极材料和供电方式改进及其用于难降解有机废水处理的研究进展。[结果]采用电芬顿技术处理难降解有机废水能够取得理想的氧化降解效果,但当前电芬顿技术仍有不足,制约其工程化应用。研发高性能的电极材料、选择优化的电源供电方式对电芬顿的处理效率至关重要。[结论]通过电芬顿体系阴极材料、阳极材料和供电方式的改进和提升,有望形成低耗高效的电化学高级氧化处理技术。

Abstract:

[Objective] The treatment of refractory organic compounds in industrial wastewater generated from industries such as electroplating and coating has become a significant research focus in environmental technology. The electro-Fenton process has the advantages of strong oxidation capacity, fast treatment rate, and easily controllable conditions. It is an electrochemical advanced oxidation technology with significant development potential and promising engineering application prospects in wastewater treatment. [Method] The classification, principle, and characteristics of the electro-Fenton method are summarized. The research progress on improvement of cathode materials, anode materials, and power supply mode in electro-Fenton system and its application in treating refractory organic wastewater were reviewed. [Result] The electro-Fenton technology can achieve an ideal oxidation degradation effect in treating refractory organic wastewater. However, the current electro-Fenton technology still has deficiencies that restrict its engineering application. The development of high-performance electrode materials and the selection of optimized power supply methods are crucial for the efficiency improvement of the electro-Fenton technology. [Conclusion] By improving the cathode material, anode material, and power supply mode of electro-Fenton technology, it is expected to develop a low-consumption and high-efficiency electrochemical advanced oxidation technology.

参考文献

[1] DEORI C, SONOWAL T, DAS M. Antimicrobial resistance:a looming threat to public health and global well-being[J]. Indian Journal of Community and Family Medicine, 2024, 10(1):18-25.

[2]齐奋春,许冲,张景茹,等.电镀园区PFASs污染特征分析及控制对策[J].电镀与涂饰, 2024, 43(7):152-160.QI F C, XU C, ZHANG J R, et al. Analysis on characteristics of PFASs pollution in electroplating park and control measures[J].Electroplating&Finishing, 2024, 43(7):152-160.

[3]袁芳,李建三,谢志丽,等.涂料工业废水处理技术研究与应用进展[J].电镀与涂饰, 2024, 43(1):150-160.YUAN F, LI J S, XIE Z L, et al. Advances in research and application of wastewater treatment technology in paint industry[J].Electroplating&Finishing, 2024, 43(1):150-160.

[4]孔丝纺,周兴风,欧阳帆,等.电子电镀废水的脱色-吸附絮凝处理工艺研究[J].电镀与涂饰, 2023, 42(23):70-77.KONG S F, ZHOU X F, OUYANG F, et al. Study on treatment of wastewater generated during electroplating of electronic product by flocculation in combination of decolorization and adsorption[J].Electroplating&Finishing, 2023, 42(23):70-77.

[5]贺框,胡小英,黄凯华,等. MnFe2O4颗粒非均相电芬顿处理柠檬酸镍配合物废水[J].电镀与涂饰, 2022, 41(23):1705-1711.HE K, HU X Y, HUANG K H, et al. Treatment of nickel citrate complex wastewater by heterogeneous electro-Fenton with MnFe2O4particles[J]. Electroplating&Finishing, 2022, 41(23):1705-1711.

[6]雷细平,刘康,侯希飞,等.改性沸石高效去除电镀废水中铜离子过程的吸附行为及机理[J].电镀与涂饰, 2025, 44(1):140-148.LEI X P, LIU K, HOU X F, et al. Adsorption behavior and mechanism of modified zeolite for efficient removal of copper ions from electroplating wastewater[J]. Electroplating&Finishing, 2025,44(1):140-148.

[7]周益辉,易师,雷细平,等.正弦交流电絮凝处理含锌电镀废水的研究[J].电镀与涂饰, 2024, 43(1):136-143.ZHOU Y H, YI S, LEI X P, et al. Study on treatment of zinc-containing electroplating wastewater by sinusoidal alternating current electrocoagulation[J]. Electroplating&Finishing, 2024,43(1):136-143.

[8] BASHIR M, BATOOL M, ARIF N, et al. Strontium-based nanomaterials for the removal of organic/inorganic contaminants from water:a review[J]. Coordination Chemistry Reviews, 2023, 492:215286.

[9] ISHAQ S, NADIM A H, AMER S M, et al. Optimization of graphene polypyrrole for enhanced adsorption of moxifloxacin antibiotic:an experimental design approach and isotherm investigation[J]. BMC Chemistry, 2024, 18:113.

[10] TAN W J, LU T T, BAI L, et al. Coalescence behavior of oil droplets in wastewater during membrane separation[J]. Chemical Engineering Research and Design, 2024, 204:11-19.

[11] WANG Y X, ZHANG Y Y, ZHU X N, et al. Plasmid-mediated transfer of antibiotic resistance genes and biofilm formation in a simulated drinking water distribution system under chlorine pressure[J]. Journal of Environmental Sciences, 2025, 152:376-388.

[12]郭立新,贾元, THANORK S,等.含抗生素污水处理技术研究进展[J].长春理工大学学报(自然科学版), 2021, 44(1):117-123.GUO L X, JIA Y, THANORK S, et al. Progress on treatment technology of antibiotic wastewater[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2021, 44(1):117-123.

[13] FANG H, LIU Y H, QIU P X, et al. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection[J]. Journal of Hazardous Materials, 2022, 432:128733.

[14]高康健,杨紫怡,钟海红,等.三维电芬顿技术在难降解有机废水处理中的研究进展[J].水处理技术, 2025, 51(2):29-36.GAO K J, YANG Z Y, ZHONG H H, et al. Research progress and prospects of three-dimensional electro-Fenton Technology in the treatment of refractory organic wastewater[J]. Technology of water treatment, 2025, 51(2):29-36.

[15]肖华,周荣丰.电芬顿法的研究现状与发展[J].上海环境科学,2004, 23(6):253-256.XIAO H, ZHOU R F. Research status and development of electro-Fenton method[J]. Shanghai Environmental Sciences, 2004,23(6):253-256.

[16]范冬琪,魏健,宋永会,等. Fered-Fenton法处理石化废水反渗透浓水[J].环境工程学报, 2015, 9(6):2653-2659.FAN D Q, WEI J, SONG Y H, et al. Treatment of reverse osmosis concentrate of petrochemical wastewater by Fered-Fenton process[J].Chinese Journal of Environmental Engineering, 2015, 9(6):2653-2659.

[17] XU X T, ZENG X L, ZHANG C K, et al. Enhanced electrocatalytic removal of tetracycline using dual carbon material combined particle electrodes in a three-dimensional electrochemical system:degradation pathway and mechanism[J]. Journal of Cleaner Production, 2023, 419:138257.

[18] GOMIS-BERENGUER A, CASANOVA A, BANKS C E, et al.All-in-one continuous electrochemical monitoring of 2-phenylphenol removal from water by electro-Fenton treatment[J]. Talanta, 2024,272:125761.

[19] NIDHEESH P V, GANDHIMATHI R. Trends in electro-Fenton process for water and wastewater treatment:An overview[J].Desalination, 2012, 299:1-15.

[20] QU C, LI Y G, MENG S J, et al. Enhanced refractory organics removal by·OH and 1O2 generated in an electro-oxidation system with cathodic Fenton-like reaction[J]. Journal of Hazardous Materials,2022, 434:128923.

[21] ZHAO C W, LI N, GUO H K, et al. Decolorization of rhodamine B using an ultrasonic oxygen-doped carbon felt as cathode in electro-Fenton system[J]. Journal of Applied Electrochemistry, 2024,54:1045-1055.

[22] WANG A M, QU J H, LIU H J, et al. Mineralization of an azo dye Acid Red 14 by photoelectro-Fenton process using an activated carbon fiber cathode[J]. Applied Catalysis B:Environmental, 2008,84(3/4):393-399.

[23] GANIYU S O, LE T X H, BECHELANY M, et al. A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process[J]. Journal of Materials Chemistry A, 2017, 5:3655-3666.

[24] LIU K, YU J C C, DONG H, et al. Degradation and mineralization of carbamazepine using an electro-Fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode[J]. Environmental Science&Technology, 2018,52(21):12667-12674.

[25]冯凡,郭波,曹群,等. CNT负载纳米铁阴极电芬顿降解左氧氟沙星[J].中国环境科学, 2024, 44(10):5513-5521.FENG F, GUO B, CAO Q, et al. Degradation of levofloxacin by electro-Fenton with CNT supported nano-iron cathode[J]. China Environmental Science, 2024, 44(10):5513-5521.

[26]张栋年,由长宇,曲毅,等. nZVI负载MCS阴极用于固定化MFC-EF系统的效能研究[J].陕西科技大学学报, 2025, 43(4):39-48, 74.ZHANG D N, YOU C Y, QU Y, et al. Study on the efficacy of nZVI loaded MCS cathode used in immobilized MFC-EF system[J].Journal of Shaanxi University of Science&Technology, 2025, 43(4):39-48, 74.

[27]魏一恺,杨俊,武梦杰,等.碳基复合材料用作电芬顿阴极处理垃圾渗滤液的效果研究[J].环境污染与防治, 2025, 47(1):42-48, 58.WEI Y K, YANG J, WU M J, et al. Study on the effect of carbon matrix composite materials as electro Fenton cathode and its performance for land leachate treatment[J]. Environmental Pollution&Control, 2025, 47(1):42-48, 58.

[28] ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free Electro-Fenton process:integrated H2O2electrogeneration, activation, and pollutants adsorption[J].Electrochimica Acta, 2019, 296:317-326.

[29] MAO S Q, SUN X P, QI H Q, et al. Cu2O nanoparticles anchored on3D bifunctional CNTs/copper foam cathode for electrocatalytic degradation of sulfamethoxazole over a broad pH range[J]. Science of The Total Environment, 2021, 793:148492.

[30] ZHANG F, ZHOU L N, MA S W, et al. Highly efficient heterogeneous electro-Fenton degradation of organic pollutants using a FeNi–OH/NF cathode[J]. Separation and Purification Technology,2023, 314:123604.

[31] LIU R L, MA J R, ZHENG X Y, et al. Enhanced electrochemical degradation of aromatic organic pollutants through accelerated electron transfer using Fe–C structured rGO/Fe–NF[J]. Separation and Purification Technology, 2024, 330:125269.

[32] KAMARAJ R, VASUDEVAN S. Sulfur-doped carbon chain network as high-performance electrocatalyst for electro-Fenton system[J].Chemistry Select, 2019, 4(8):2428-2435.

[33] WANG Y, LIU Y H, LIU T F, et al. Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode[J]. Applied Catalysis B:Environmental, 2014, 156/157:1-7.

[34] QIAN Y H, KHAN I A, ZHAO D. Electrocatalysts derived from metal–organic frameworks for oxygen reduction and evolution reactions in aqueous media[J]. Small, 2017, 13(37):1701143.

[35]石申,刘正伟,奚吉,等.阴极电芬顿法电极材料的选择及处理印染废水的研究[J].兵器材料科学与工程, 2014, 37(1):115-117.SHI S, LIU Z W, XI J, et al. Selection of electrode material and treatment of printing wastewater by EF-Fenton[J]. Ordnance Material Science and Engineering, 2014, 37(1):115-117.

[36] KONG Y, WANG Z L, WANG Y, et al. Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode[J]. New Carbon Materials, 2011,26(6):459-464.

[37]尔古阿沙,高官金,刘强兵,等.新型Ti/Zr–SnO2/β-PbO2电极的构筑及高效降解亚甲基蓝[J].环境科学与技术, 2024, 47(4):1-8.ERGU A S, GAO G J, LIU Q B, et al. The development of novel Ti/Zr–SnO2/β-PbO2 electrode for high-efficiently degradation of methylene blue[J]. Environmental Science&Technology, 2024, 47(4):1-8.

[38]李亚峰,刘奕含,郭鹏成. Nafion-SDS改性Ti/Sb–SnO2/PbO2电极电催化氧化金橙Ⅱ的研究[J].现代化工, 2025, 45(3):88-93, 99.LI Y F, LIU Y H, GUO P C. Electrocatalytic oxidation of orange II over Nafion-SDS modified Ti/Sb–SnO2/PbO2 electrode[J]. Modern Chemical Industry, 2025, 45(3):88-93, 99.

[39] KEN D S, SINHA A. Dimensionally stable anode(Ti/RuO2)mediated electro-oxidation and multi-response optimization study for remediation of coke-oven wastewater[J]. Journal of Environmental Chemical Engineering, 2021, 9(1):105025.

[40]尹星,郭雲,任乐辉,等. Pd/Ti阳极电催化氧化处理焦化废水反渗透浓缩液的研究[J].能源环境保护, 2023, 37(6):12-22.YIN X, GUO Y, REN L H, et al. Electrocatalytic oxidation of Pd/Ti anode for the treatment of reverse osmosis concentrates from coking wastewater[J]. Energy Environmental Protection, 2023, 37(6):12-22.

[41]刘楚楚,金春姬,孙楠,等.阴极阳极协同电催化降解高硫酸盐废水中活性染料[J].工业水处理, 2024, 44(4):127-137.LIU C C, JIN C J, SUN N, et al. Electrocatalytic degradation of reactive dyes in high sulfate wastewater by synergistic effect of anode and cathode[J]. Industrial Water Treatment, 2024, 44(4):127-137.

[42] SHI L L, XU F, GAO J Y, et al. Nanostructured boron-doped diamond electrode for degradation of the simulation wastewater of phenol[J].Diamond&Related Materials, 2020, 109:108098.

[43]郭思远,王雪,李昕圆,等.钛基体Ti4O7阳极在高盐体系下的电催化降解性能[J].西安交通大学学报, 2023, 57(4):188-198.GUO S Y, WANG X, LL X Y, et al. Electrocatalytic degradation performance of Ti4O7 anode on titanium substrate in high salt system[J]. Journal of Xi’an Jiaotong University, 2023, 57(4):188-198.

[44]智丹,吴楚楚,艾莎莉,等.亚氧化钛纳米管阳极对水中甲萘威的电化学降解[J].环境工程学报, 2023, 17(1):48-58.ZHI D, WU C C, AI S L, et al. Electrochemical degradation of carbaryl in water over the Ti/Ti4O7–NTA anode[J]. Chinese Journal of Environmental Engineering, 2023, 17(1):48-58.

[45] LEI J N, XU Z C, YUAN X Q, et al. Linear attenuation current input mode:a novel power supply mode for electrochemical oxidation process[J]. Journal of Water Process Engineering, 2020, 36:101305.

[46] XU T, FU L Y, LU H Y, et al. Electrochemical oxidation degradation of Rhodamine B dye on boron-doped diamond electrode:Input mode of power attenuation[J]. Journal of Cleaner Production, 2023, 401:136794.

[47] WANG J D, YAO J C, WANG L, et al. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater[J]. Separation and Purification Technology, 2020, 230:115851.

[48] XU T, TANG X T, QIU M T, et al. Degradation of levofloxacin from antibiotic wastewater by pulse electrochemical oxidation with BDD electrode[J]. Journal of environmental management, 2023, 344:118718.

[49] ZHOU T F, OU J H, XU T, et al. The process and mechanism of pulse electrolytic oxidation of ciprofloxacin antibiotic in wastewater[J].Process Safety and Environmental Protection, 2023, 173:452-460.

[50] ZHOU Y H, HU B N, ZHANG X J, et al. Investigation on mechanism of tetracycline removal from wastewater by sinusoidal alternating electro-Fenton technique[J]. Sustainability, 2022, 14(4):2328.

[51] XU T, ZHENG X T, ZHOU Y H, et al. Study on the treatment of Cu2+–organic compound wastewater by electro-Fenton coupled pulsed AC coagulation[J]. Chemosphere, 2021, 280:130679.

[52] GUO H, XU Z C, QIAO D, et al. Fabrication and characterization of porous titanium-based PbO2 electrode through the pulse electrodeposition method:deposition condition optimization by orthogonal experiment[J]. Chemosphere, 2020, 261:128157.

基本信息:

DOI:10.19289/j.1004-227x.2025.09.018

中图分类号:X703

引用信息:

[1]易师,周益辉,雷细平,等.电芬顿阴阳极材料制备与供电方式改进的研究进展[J].电镀与涂饰,2025,44(09):138-146.DOI:10.19289/j.1004-227x.2025.09.018.

基金信息:

湖南省自然科学基金项目(2025JJ80338); 教育部产学合作协同育人项目(2411011832); 湖南汽车工程职业大学校级重点课题(HQZYKY2023A10)

检 索 高级检索