nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.44 30-35
镍钛合金心血管支架的电化学抛光工艺
基金项目(Foundation): 山东省自然科学基金(ZR2020ME161)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.02.005
摘要:

[目的]选择性激光熔化(SLM)技术制备的镍钛合金组件表面品质往往较差,表面常附着一些部分熔化的粉末,应进行适当的表面处理。[方法]采用氯化钠-乙二醇电解液对选区激光熔化制备的镍钛合金心血管支架进行电化学抛光。研究了电压、温度和抛光时间对镍钛合金心血管支架表面粗糙度的影响。分析了较佳条件下电化学抛光后心血管支架的表面形貌、化学成分和表面润湿性。[结果]较佳的电化学抛光参数为:电压25 V,温度28℃,时间25 min。在该条件下电化学抛光后,NiTi合金支架表面变得光滑均匀,表面粗糙度Sa低至0.31μm,水接触角增大到103.5°,即疏水性提升。[结论]电化学抛光能够显著提高以SLM工艺制备的镍钛合金心血管支架的表面品质,提高其生物兼容性。

Abstract:

[Objective] The surface quality of nickel–titanium alloy(NiTi) components prepared by selective laser melting(SLM) technology is often poor with partially melted powders attaced to its surface. Therefore, appropriate surface treatment is necessary. [Method] Nitinol cardiovascular stent manufactured by SLM technology was electrochemically polished in an electrolyte composed of sodium chloride and ethylene glycol. The effects of voltage,temperature, and polishing time on the surface roughness of nitinol cardiovascular stent were studied. The surface morphology, chemical composition, and surface wettability of the stent electrochemically polished under the optimized conditions were analyzed. [Result] The electrochemical polishing process parametrs were optimized as follows: voltage 25 V, temperature 28 ℃, and polishing time 25 min. The surface of the nitinol stent became smooth and uniform with a surface roughness Sa of 0.31 μm after being polished under the optimized conditions. The water contact angle of nitinol stent was increased to 103.5°, indicating that its hydrophobicity was improved. [Conclusion] Electrochemical polishing can significantly improve the surface quality of nitinol cardiovascular stents manufactured by SLM technology, thereby enhancing their biocompatibility.

参考文献

[1] ROBERTSON S W, RITCHIE R O. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents:a basis for defining the effect of crack-like defects[J]. Biomaterials, 2007, 28(4):700-709.

[2] LI Z Q. Simulation of initial formation and growth of martensitic band in NiTi micro-tube under tension[J]. International Journal of Solids and Structures, 2010, 47:113-125.

[3] MARATTUKALAM J J, SINGH A, DATTA S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy[J]. Materials Science and Engineering C, 2015, 57:309-313.

[4] GAO B W, ZHAO H J, PENG L Q, et al. a review of research progress in selective laser melting(SLM)[J]. Micromachines, 2023, 14(1):57.

[5] ZHANG W N, WANG L Z, FENG Z X, et al. Research progress on selective laser melting(SLM)of magnesium alloys:a review[J]. Optik,2020, 207:163842.

[6] SINGLA A K, BANERJEE M, SHARMA A, et al. Selective laser melting of Ti6Al4V alloy:process parameters, defects and posttreatments[J]. Journal of Manufacturing Processes, 2021, 64:161-187.

[7] SIEBERT R, SCHNEIDER J, BEYER E, et al. Laser cutting and mechanical cutting of electrical steels and its effect on the magnetic properties[J]. IEEE Transactions on Magnetics, 2014, 50(4):1-4.

[8]徐晨,李志永,张威,等.工艺参数对SLM成形Ni Ti合金致密度与裂纹缺陷的影响[J].制造技术与机床, 2023(11):148-153.XU C, LI Z Y, ZHANG W, et al. Effect of process parameters on the densities and cracking defects of SLM formed NiTi alloys[J].Technology and Manufacture, 2023(11):148-153.

[9] FROTSCHER M, KAHLEYSS F, SIMON T, et al. Achieving small structures in thin NiTi sheets for medical applications with water jet and micromachining:a comparison[J]. Journal of Materials Engineering&Performance, 2011, 20(4/5):776-782.

[10] WONGWEERAYOOT E, SRITURAVANICH W, PIMPIN A.Fabrication and characterization of nitinol-copper shape memory alloy bimorph actuators[J]. Journal of Materials Engineering and Performance, 2015, 24(2):635-643.

[11] SHARMA A K. Surface modification of titanium—Part 2—acid etching&electrochemical polishing[J]. Galvanotechnik, 2023, 114(6):697-698, 701-704.

[12]燕禾,吴春蕾,唐旭福,等.化学机械抛光技术研究现状及发展趋势[J].材料研究与应用, 2021, 15(4):432-440.YAN H, WU C L, TANG X F, et al. The research status and development trends of chemical mechanical polishing[J]. Materials Research and Application, 2021, 15(4):432-440.

[13] PARK J S, JEONG S, LEE D H, et al. Recent advances in gastrointestinal stent development[J]. Clinical Endoscopy, 2015, 48(3):209-215.

[14] MU J R, SUN T T, LEUNG C L A, et al. Application of electrochemical polishing in surface treatment of additively manufactured structures:a review[J]. Progress in Materials Science, 2023, 136:101109.

[15] Navickait?K, Ianniciello L, Tu?ek J, et al. Plasma electrolytic polishing of nitinol:Investigation of functional properties[J]. Materials, 2021,14(21):6450.

[16] WANG Y Q, WEI X T, LI Z Y, et al. Experimental Investigation on the effects of different electrolytic polishing solutions on nitinol cardiovascular stents[J]. Journal of Materials Engineering and Performance. 2021, 30(6):4318-4327.

[17] LI X, HAO S J, DU B P, et al. High-performance self-expanding NiTi stents manufactured by laser powder bed fusion[J]. Metals and Materials International, 2022, 29(5):1510-1521.

[18] ZHANG W, LI Z Y, XU C, et al. Surface characteristics of NiTi cardiovascular stents by selective laser melting and electrochemical polishing[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130:623-634.

[19]?YCZKOWSKA-WID?AK E, LOCHY?SKI P, NAWRAT G.Electrochemical polishing of austenitic stainless steels[J]. Materials,2020, 13(11):2557.

[20] WEVER D J, VELDHUIZEN A G, VRIES J D, et al. Electrochemical and surface characterization of a nickel–titanium alloy[J]. Biomaterials,1998, 19(78/79):761-769.

[21] CHEMBATH M, BALARAJU J N, SUJATA M, et al. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy[J]. Materials Science and Engineering:C,2015, 56:417-425.

[22] SHIM J W, BAE I H, JEONG M H, et al. Effects of a titanium dioxide thin film for improving the biocompatibility of diamond-like coated coronary stents[J]. Metals and Materials International, 2020, 26:1455-1462.

[23] WANG Y G, JING X, LI YANG, et al. Optimization of the electrolytic polishing parameters of intravascular stent based on the orthogonal test method[J]. International Journal of Electrochemical Science, 2024,19(8):100648.

[24] WANG G J, XIA H B, HUANG W M, et al. Influence of milling electrochemical polishing on corrosion resistance of NiTi shape memory alloy[J]. Micromachines, 2022, 13(12):2204.

[25] YANG C J, TONG Y C, LI B Y, et al. The effect of high-temperature annealing on surface wettability, mechanical and chemical properties of laser ablated nitinol surface[J]. Optics&Laser Technology, 2023, 161:109108.

基本信息:

DOI:10.19289/j.1004-227x.2025.02.005

中图分类号:R318;TG175

引用信息:

[1]王雅丽,李志永,张威等.镍钛合金心血管支架的电化学抛光工艺[J].电镀与涂饰,2025,44(02):30-35.DOI:10.19289/j.1004-227x.2025.02.005.

基金信息:

山东省自然科学基金(ZR2020ME161)

检 索 高级检索