nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.44 10-20
基于配方均匀试验研究TC4钛合金表面磷酸盐系微弧氧化膜层的性能
基金项目(Foundation): 甘肃省科技重大专项(22ZD6GA008)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.09.002
摘要:

[目的]基于配方均匀试验设计,研究磷酸盐体系微弧氧化(MAO)电解液中各组分配比对TC4钛合金表面MAO膜层微观结构、耐蚀性和耐磨性的影响,以得到较优的电解液配方。[方法]通过配方均匀设计确定10组不同Na3PO4、KF和NaOH质量浓度比的电解液,在TC4钛合金表面制备MAO膜层。采用扫描电镜(SEM)、X射线衍射仪(XRD)、电化学工作站及摩擦磨损试验机分析了膜层的形貌、物相组成、耐蚀性及摩擦学性能。[结果]电解液各组分配比对膜层性能影响显著。当Na3PO4、KF和NaOH的质量浓度比为0.03∶0.63∶0.34时,所得MAO膜层结构致密,富含金红石型TiO2相,在酸性和中性介质中的耐蚀性良好,且耐磨性较优。在高载低频(载荷5 N,频率1 Hz)模式下MAO膜层虽磨损失效,但有效延缓了基体损伤;在低载高频(载荷0.5 N,频率10 Hz)模式下摩擦氧化层的形成使摩擦因数降至0.5,膜层未磨穿。[结论]通过配方均匀设计可优化微弧氧化电解液各组分配比,显著提升TC4钛合金表面MAO膜层的耐蚀性和耐磨性。采用较优配方所得MAO膜层在低载高频条件下表现出优良的减摩耐磨特性,适用于微动磨损服役环境。

Abstract:

[Objective] The effects of component ratios in a phosphate-based micro-arc oxidation(MAO) electrolyte on the microstructure, corrosion resistance, and wear resistance of MAO coatings on TC4 titanium alloy were studied by mixture uniform experiments, aiming to identify an optimal electrolyte formulation. [Method] Ten groups of electrolytes with varying mass concentration ratios of Na3PO3, KF, and NaOH were designed via mixture uniform method. Micro-arc oxidation was carried out on TC4 titanium alloy. The morphology, phase composition, corrosion resistance, and tribological properties of MAO coatings were characterized using scanning electron microscopy(SEM), X-ray diffraction(XRD), electrochemical workstation, and friction and wear tests. [Result] The properties of MAO coating were significantly influenced by electrolyte composition. The MAO coating obtained with a mass ratio of Na3PO3, KF, and NaOH of 0.03:0.63:0.34 exhibited compact structure, high content of rutile TiO2, excellent corrosion resistance in both acidic and neutral media, and superior wear resistance. Under the high-load(5 N) and low-frequency(1 Hz) condition, although the MAO coating eventually experienced wear failure, it effectively delayed the damage to the substrate by mitigating the generation of fatigue pits and abrasive particles. Under low-load(0.5 N) and high-frequency(10 N) conditions, the formation of a tribo-oxide layer reduced the friction coefficient to 0.5, and the MAO coating remained intact without being worn through. [Conclusion] The mixture uniform design effectively optimizes the component ratios of the MAO electrolyte, significantly enhancing the corrosion and wear resistance of MAO coatings on TC4 titanium alloy. The optimized formulation yields MAO coatings with excellent friction-reducing and anti-wear properties under low-load and high-frequency conditions, making them suitable for fretting wear service environments.

参考文献

[1]唐洋洋,袁守谦,卫琛浩,等. TC4钛合金表面处理技术对腐蚀性能的影响[J].热加工工艺, 2015, 44(8):21-23.TANG Y Y, YUAN S Q, WEI C H, et al. Effect of surface treatment technology on corrosion performance of TC4 titanium alloy[J]. Hot Working Technology, 2015, 44(8):21-23.

[2]董凯辉,宋影伟,韩恩厚.钛合金耐磨微弧氧化制备技术的研究进展[J].表面技术, 2021, 50(7):57-65.DONG K H, SONG Y W, HAN E H. Research progress on the preparation of wear-resistant micro-arc oxidation coatings on titanium alloys[J]. Surface Technology, 2021, 50(7):57-65.

[3]张文毓.钛合金表面耐磨处理技术研究现状[J].全面腐蚀控制,2017, 31(2):25-29, 87.ZHANG W Y. Titanium alloy surface wear-resisting processing engineering research present situation[J] Total Corrosion Control,2017, 31(2):25-29, 87.

[4]余国庆,高书刊,王国迪,等.钛合金微弧氧化工艺及性能评价[J].热加工工艺, 2021, 50(6):13-17.YU G Q, GAO S K, WANG G D, et al. Microarc oxidation process and performance evaluation of titanium alloy[J]. Hot Working Technology,2021, 50(6):13-17.

[5] ZHANG Z F, FAN C L, FENG R, et al. Research progress of micro-arc oxidation ceramic coating on titanium alloy[J]. Material Sciences, 2019,9(8):766-773.

[6]张云龙,董鑫焱,翟梓棫,等. Er2O3微粒掺杂对TC4钛合金微弧氧化涂层组织和耐磨性的影响[J].稀有金属, 2024, 48(8):1120-1131.ZHANG Y L, DONG X Y, ZHAI Z Y, et al. Microstructure and wear resistance of MAO coatings of TC4 alloy with different Er2O3 doping amounts[J]. Chinese Journal of Rare Metals, 2024, 48(8):1120-1131.

[7] WANG Y M, LEI T Q, JIANG B L, et al. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution[J]. Applied Surface Science, 2004,233(1/2/3/4):258-267.

[8]齐玉明,彭振军,刘百幸,等.钛合金表面高硬度微弧氧化膜的制备和耐磨性研究[J].表面技术, 2019, 48(7):81-88.QI Y M, PENG Z J, LIU B X, et al. Fabrication and wear resistance of hard micro arc oxidation coatings on Ti alloys[J]. Surface Technology,2019, 48(7):81-88.

[9]李康,付雪松,胡建军,等.微弧氧化处理TC4合金表面微动磨损性能[J].稀有金属材料与工程, 2017, 46(3):765-769.LI K, FU X S, HU J J, et al. Fretting wear behavior of ceramic coating prepared by micro-arc oxidation on TC4 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3):765-769.

[10] AN L Y, MA Y, LIU Y P, et al. Effects of additives, voltage and their interactions on PEO coatings formed on magnesium alloys[J]. Surface&Coatings Technology, 2018, 354:226-235.

[11]杨登科,马颖,安凌云,等.基于配方均匀试验优化微弧氧化电解液浓度配比[J].表面技术, 2021, 50(3):338-347.YANG D K, MA Y, AN L Y, et al. Optimizing electrolyte formulas for micro-arc oxidation based on uniform formula experimental design[J].Surface Technology, 2021, 50(3):338-347.

[12]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社. 2017.LI Y Y, HU C R. Experiment Design and Data Processing[M]. Beijing:Chemical Industry Press, 2017.

[13]马颖,冯君艳,马跃洲,等.镁合金微弧氧化膜耐蚀性表征方法的对比研究[J].中国腐蚀与防护学报, 2010, 30(6):442-448.MA Y, FENG J Y, MA Y Z, et al. Comparative study on characterization of corrosion resistance of micro-arc oxidation coatings on magnesium alloys[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(6):442-448.

[14] MACAK J.M., TSUCHIYA H, GHICOV A, et al. TiO2 nanotubes:Self-organized electrochemical formation, properties and applications[J]. Current Opinion in Solid State and Materials Science, 2007,11(1/2):3-18.

[15] YEROKHIN A L, LEYLAND A, MATTHEWS A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti6Al4V alloy[J]. Surface and Coatings Technology 2000, 130(2):195-206.

[16] DIOMIDIS N, MISCHLER S. Third body effects on friction and wear during fretting of steel contacts[J]. Tribology International, 2011,44(11):1452-1460.

[17]景鹏飞,俞树荣,宋伟,等.接触载荷对TC4钛合金微动磨损行为的影响[J].表面技术, 2019, 48(11):266-274.JING P F, YU S R, SONG W, et al. Effect of contact load on fretting wear behavior of TC4 titanium alloy[J]. Surface Technology, 2019,48(11):266-274.

[18]刘勇,杨德庄,何世禹,等. TC4合金的磨损率及磨损表面层的显微组织变化[J].稀有金属材料与工程, 2005, 34(1):128-131.LIU Y, YANG D Z, HE S Y, et al. Study on dry sliding wear of TC4alloy in vacuum[J]. Rare Metal Materials and Engineering, 2005,34(1):128-131.

[19] HAGER J C H, EVANS R D. Friction and wear properties of black oxide surfaces in rolling/sliding contacts[J]. Wear, 2015, 338/339:221-231.

[20] HAGER J C H, HU J, MURATORE C, et al. The mechanisms of gross slip fretting wear on nickel oxide/Ti6Al4V mated surfaces[J]. Wear,2010, 268:1195-1204.

[21]周恺,谢发勤,吴向清,等.载荷对TC21钛合金微弧氧化涂层微动磨损性能的影响[J].稀有金属材料与工程, 2021, 50(8):2831-2840.ZHOU K, XIE F Q, WU X Q, et al. Effects of normal load on fretting wear properties of TC21 titanium alloy with plasma electrolytic oxidation coatings[J]. Rare Metal Materials and Engineering, 2021,50(8):2831-2840.

基本信息:

DOI:10.19289/j.1004-227x.2025.09.002

中图分类号:TG174.4

引用信息:

[1]邵珠倩,马颖,欧凯奇,等.基于配方均匀试验研究TC4钛合金表面磷酸盐系微弧氧化膜层的性能[J].电镀与涂饰,2025,44(09):10-20.DOI:10.19289/j.1004-227x.2025.09.002.

基金信息:

甘肃省科技重大专项(22ZD6GA008)

检 索 高级检索