nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2026, 01, v.45 21-27
镁合金表面ZIF-90/PA复合涂层的制备及性能
基金项目(Foundation): 国家自然科学基金(U1504504)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2026.01.004
摘要:

[目的]通过表面改性技术来改善AZ31B镁合金的耐蚀性及抗菌性。[方法]以溶剂热法在硅烷化AZ31B镁合金表面制备了一种含锌离子的沸石咪唑酯骨架材料涂层ZIF-90,随后通过植酸(PA)化学转化制得ZIF-90/PA复合涂层。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)分析了涂层的表面形貌和组织结构,通过电化学测量及析氢实验考察了涂层镁合金在模拟体液(SBF)中的耐腐蚀性能。采用金黄色葡萄球菌测试了涂层镁合金的抗菌性能。[结果]成功在AZ31B镁合金表面合成了ZIF-90/PA复合涂层。相比于PA涂层镁合金,ZIF-90/PA复合涂层镁合金在SBF中的容抗弧半径明显增大,腐蚀电流降低了1个数量级,腐蚀电位正移了0.217 V,析氢量明显降低,抗菌率由25.3%提高到98.2%。[结论]相较于单一的PA涂层,得益于较厚的涂层结构、致密的表面转化膜、良好的结合力,以及锌离子的抗菌作用,ZIF-90/PA复合涂层拥有更好的耐蚀性及抗菌性。

Abstract:

[Objective] To improve the corrosion resistance and antibacterial properties of AZ31B magnesium alloy through surface modification technology. [Method] A zinc-ion-containing zeolitic imidazolate framework coating(ZIF-90) was prepared on the surface of silanized AZ31B magnesium alloy via a solvothermal method, followed by the chemical conversion with phytic acid(PA) to form a ZIF-90/PA composite coating. The surface morphology and microstructure of the coatings were analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM), and Fourier-transform infrared spectroscopy(FTIR). The corrosion resistance of the coated magnesium alloy in simulated body fluid(SBF) was evaluated via electrochemical measurements and hydrogen evolution experiments. The antibacterial performance was examined using Staphylococcus aureus. [Result] The ZIF-90/PA composite coating was successfully synthesized on the surface of AZ31B magnesium alloy. Compared with the PA-coated magnesium alloy, the ZIF-90/PA-coated magnesium alloy exhibited a significantly increased capacitive arc radius in SBF, a reduction in corrosion current density by one order of magnitude, a positive potential shift by 0.217 V, a notable decrease in hydrogen evolution volume, and an improvement in antibacterial rate from 25.3% to 98.2%. [Conclusion] Compared with the single PA coating, the ZIF-90/PA composite coating exhibits superior corrosion resistance and antibacterial properties, due to its thicker structure, more compact surface conversion film, strong adhesion strength, and the antibacterial effect of zinc ions.

参考文献

[1]姜宇,陈虎魁.医用镁合金表面改性研究进展[J].材料保护, 2020,53(11):113-121.JIANG Y, CHEN H K. Research progress on the surface modification of biomedical magnesium alloy[J]. Materials Protection, 2020, 53(11):113-121.

[2]王彬,梁敏洁,廖海洪,等.生物医用镁合金表面改性的研究进展[J].热加工工艺, 2020, 49(6):13-16.WANG B, LIANG M J, LIAO H H, et al. Research progress on surface modification of biomedical magnesium alloys[J]. Hot Working Technology, 2020, 49(6):13-16.

[3]张精豪,侯树森,李文星,等. AZ31镁合金磁控溅射硅膜层的耐蚀性和生物相容性[J].电镀与涂饰, 2025, 44(2):58-63.ZHANG J H, HOU S S, LI W X, et al. Corrosion resistance and biocompatibility of silicon film deposited on AZ31 magnesium alloy by magnetron sputtering[J]. Electroplating&Finishing, 2025, 44(2):58-63.

[4]SHAO Y, ZENG R C, LI S Q, et al. Advance in antibacterial magnesium alloys and surface coatings on magnesium alloys:a review[J]. Acta Metallurgica Sinica(English Letters), 2020, 33(5):615-629.

[5]张敏.镁合金表面植酸/羟基磷灰石生物活性涂层的制备及性能研究[D].天津:天津大学, 2015.ZHANG M. The preparation and characterization of phytic acid/hydroxyapatite bioactive coatings on magnesium alloy[D]. Tianjin:Tianjin University, 2015.

[6]刘欢.医用镁合金表面氟化镁/植酸复合膜层的制备及腐蚀行为研究[D].太原:中北大学, 2022.LIU H. Preparation and corrosion behavior of magnesium fluoride/phytic acid composite film on medical magnesium alloy surface[D].Taiyuan:North University of China, 2022.

[7]WANG F W, CAI S, SHEN S B, et al. Preparation of phytic acid/silane hybrid coating on magnesium alloy and its corrosion resistance in simulated body fluid[J]. Journal of Materials Engineering and Performance, 2017, 26(9):4282-4290.

[8]DEY C, KUNDU T, BISWAL B P, et al. Crystalline metal–organic frameworks(MOFs):synthesis, structure and function[J]. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 2014, 70(1):3-10.

[9]肖天铸,刘伟,纪茜. AZ31B镁合金表面Mg–Cu-MOF涂层的制备及性能[J].电镀与涂饰, 2023, 42(3):80-84.XIAO T Z, LIU W, JI Q. Preparation and properties of Mg–Cu-MOF coating on AZ31B magnesium alloy[J]. Electroplating&Finishing,2023, 42(3):80-84.

[10]ZHANG M X, XIANG T F, DONG C D, et al. Preparation of a transparent superhydrophobic coating based on silane-modified zeolitic imidazolate frameworks and study on its properties[J].Electroplating&Finishing, 2018, 37(17):762-772.张曼昕,项腾飞,董春栋,等.基于硅烷改性沸石咪唑酯骨架的透明超疏水涂层的制备及性能研究[J].电镀与涂饰, 2018, 37(17):762-772.

[11]李旭飞,黄维秋,唐波,等.沸石咪唑酯骨架材料ZIF-90的合成及应用研究进展[J].化工新型材料, 2020, 48(4):10-16.LI X F, HUANG W Q, TANG B, et al. Research advance in synthesis and application of ZIF-90 zeolitic imidazolate frameworks[J]. New Chemical Materials, 2020, 48(4):10-16.

[12]CHEN S Q, PANG H K, SUN J N, et al. Research advances and applications of ZIF-90 metal–organic framework nanoparticles in the biomedical field[J]. Materials Chemistry Frontiers, 2024, 8(5):1195-1211.

[13]CALERO S, GÓMEZ-ÁLVAREZ P. Underlying adsorption mechanisms of water in hydrophobic and hydrophilic zeolite imidazolate frameworks:ZIF-71 and ZIF-90[J]. The Journal of Physical Chemistry C, 2015, 119(41):23774-23780.

[14]李淑敏.金属有机框架ZIF-90及其杂化物的合成和性能研究[D].上海:华东师范大学, 2023.LI S M. Synthesis and performance studies of metal–organic framework ZIF-90 and its hybrids[D]. Shanghai:East China Normal University,2023.

[15]吕恺洪,马凤仓,何代华,等.壳聚糖包覆ZIF-90的药物释放及抗菌性能研究[J].有色金属材料与工程, 2024, 45(1):34-39.LYU K H, MA F C, HE D H, et al. Study on drug release and antibacterial properties of chitosan coated ZIF-90[J]. Nonferrous Metal Materials and Engineering, 2024, 45(1):34-39.

[16]杨慧敏.镁合金表面沸石咪唑酯骨架复合薄膜的制备与耐蚀性能[D].天津:天津大学, 2020.YANG H M. Preparation and corrosion resistance of zeolitic imidazole frameworks’ composite film on magnesium alloy[D].Tianjin:Tianjin University, 2020.

[17]WEN X P, MA J K, JIANG D M, et al. Fabrication of indocyanine green-loaded zeolitic imidazole frameworks-90 coating on titanium implants to enhance antibacterial and osteogenic effects[J]. Materials Letters, 2023, 351:135064.

[18]JAROSZ M, OLBERT M, WYSZOGRODZKA G, et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling[J]. Inflammopharmacology, 2017, 25(1):11-24.

[19]曾纪勇,郭兴伍,彭立明,等.镁合金植酸化学转化膜研究进展[J].材料保护, 2019, 52(12):124-128.ZENG J Y, GUO X W, PENG L M, et al. Research progress of phytic acid chemical conversion coatings on magnesium alloy[J]. Materials Protection, 2019, 52(12):124-128.

[20]KOKUBO T, TAKADAMA H. Simulated body fluid(SBF)as a standard tool to test the bioactivity of implants[M]//BÄUERLEIN E.Handbook of Biomineralization:Biological Aspects and Structure Formation. Weinheim:Wiley, 2007:97-109.

[21]邹兆伟,史福军,黄宗海,等.纳米载银磷酸锆抗菌聚氨酯的抗菌性能[J].中国组织工程研究, 2012, 16(3):405-408.ZOU Z W, SHI F J, HUANG Z H, et al. Antibacterial performance of nano-silver–zirconium phosphate antibacterial polyurethane[J]. Chinese Journal of Tissue Engineering Research, 2012, 16(3):405-408.

[22]ZHOU N, WU X L, WANG S X, et al. Amino-modified ZIF-90 for effective adsorption of Au(III)in environmental water[J]. Molecules,2025, 30(8):1826.

[23]LIU W, ZHANG Y Q, DONG Z L, et al. An efficient bifunctional core–shell ZIF-90@ZIF-67 composite as a stable pickering interfacial catalyst for the deacetalization-knoevenagel tandem reaction[J].Chemistry-A European Journal, 2025, 31(3):e202403363.

[24]张涛,武肖娜,尹庆水,等.镁合金AZ31B材料表性与成骨细胞的黏附[J].中国组织工程研究, 2013, 17(12):2123-2130.ZHANG T, WU X N, YIN Q S, et al. Surface properties of magnesium alloy AZ31B and its influence on osteoblast adhesion[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(12):2123-2130.

[25]陈星云,陶烨寅,彭叔森,等.纳米植酸锌缓蚀效果及其复合环氧涂层的防护性能[J].表面技术, 2022, 51(5):32-39.CHEN X Y, TAO Y Y, PENG S S, et al. Corrosion inhibition of zinc phytate nanoparticles and protective performance of the composite epoxy coating[J]. Surface Technology, 2022, 51(5):32-39.

[26]ZHU X L, CHEN J, SCHEIDELER L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses[J].Biomaterials, 2004, 25(18):4087-4103.

[27]XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites:a review[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(7):806-819.

[28]顾健美.金属有机骨架@氨基型有机硅杂化材料的制备及其性能研究[D].济南:济南大学, 2022.GU J M. Preparation and properties of metal–organic frameworks@aminotype organosilicon hybrid materials[D]. Jinan:University of Jinan, 2022.

[29]LIU X L, LI Y S, BAN Y J, et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks[J]. Chemical Communications,2013, 49(80):9140-9142.

[30]NASSAR R, NASSAR M, VIANNA M E, et al. Antimicrobial activity of phytic acid:an emerging agent in endodontics[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:753649.

[31]CHEN Y T, CAI J H, LIU D C, et al. Zinc-based metal organic framework with antibacterial and anti-inflammatory properties for promoting wound healing[J]. Regenerative Biomaterials, 2022, 9:rbac019.

基本信息:

DOI:10.19289/j.1004-227x.2026.01.004

中图分类号:TG174.4

引用信息:

[1]刘伟,王少冲,纪茜.镁合金表面ZIF-90/PA复合涂层的制备及性能[J].电镀与涂饰,2026,45(01):21-27.DOI:10.19289/j.1004-227x.2026.01.004.

基金信息:

国家自然科学基金(U1504504)

检 索 高级检索