nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.44 21-32
钛合金微弧氧化膜层在酸性介质中耐蚀性的对比研究
基金项目(Foundation): 甘肃省科技重大专项(22ZD6GA008)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.09.003
摘要:

[目的]探究电解液中有无氟化物和磷酸钠浓度的变化对钛合金微弧氧化膜层结构和性能的影响,考察膜层在硝酸与氢氟酸介质中的耐蚀性差异及腐蚀特点。[方法]基于含氟添加剂和不含氟添加剂的两组磷酸盐电解液,在TC4钛合金表面制备微弧氧化膜层。采用涡流测厚仪、扫描电子显微镜(SEM)、激光共聚焦显微镜(LSCM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)和电子探针(EPMA)分析了膜层的厚度、粗糙度、微观形貌、物相种类、元素组成及其分布,利用点滴腐蚀实验评价膜层的耐蚀性。[结果]添加氟化物或提高磷酸钠浓度均可改善膜层的致密性,且提高了膜层中金红石型TiO2、Al2O3、非晶态氧化物等耐蚀相的含量。膜层在硝酸中更耐蚀。采用含氟化钾的电解液制备的膜层在两种酸性介质中均呈现出较优的耐蚀性。当磷酸钠的质量浓度为16 g/L时,膜层的耐蚀性更优。[结论]添加氟化物和提高磷酸钠浓度改善了TC4钛合金微弧氧化膜层的致密性、成分及物相,进而提高了膜层的耐蚀性。硝酸和氢氟酸介质分别以消耗性腐蚀和渗透性腐蚀为主的方式侵蚀膜层。膜层较薄且厚度一致时,在硝酸中,膜层的致密度对其耐蚀性有关键影响;在氢氟酸中,膜层的耐蚀性主要取决于成分及物相组成。

Abstract:

[Objective] To study the effect of the presence or absence of fluoride additive and the variation of sodium phosphate concentration in the electrolyte on the structure and properties of micro-arc oxidation(MAO) coatings on titanium alloy, and to investigate the differences of corrosion resistance and characteristics of the coatings in nitric acid(HNO3) and hydrofluoric acid(HF) media. [Method] MAO coatings were prepared on the surface of TC4 titanium alloy in phosphate-based electrolytes with and without fluoride additive. The thickness, roughness, morphology, phase constitution, elemental distribution, and chemical states of MAO coatings were characterized by using eddy current thickness meter, scanning electron microscope(SEM), laser scanning confocal microscope(LSCM), X-ray diffractometer(XRD), X-ray photoelectron spectrometer(XPS), and electron probe X-ray micro-analyzer(EPMA), respectively. The corrosion resistance of MAO coatings was evaluated through dropping corrosion test. [Result] The addition of fluoride additive or an increase in sodium phosphate concentration enhanced the coating compactness and increased the content of corrosion-resistant phases such as rutile TiO2, Al2O3, and amorphous oxides. The MAO coatings exhibited better corrosion resistance in HNO3 than in HF. The coatings prepared with potassium fluoride showed superior corrosion resistance in both acids. A sodium phosphate concentration of 16 g/L yielded the optimal corrosion resistance. [Conclusion] The incorporation of fluoride additive and the increase in sodium phosphate concentration enhance the compactness, chemical composition, and phase structure of MAO coatings on TC4 titanium alloy, thereby improving their corrosion resistance. In HNO3, corrosion occurs mainly through consumptive attack, where coating compactness plays a critical role; in HF, penetration-dominated corrosion prevails, and corrosion resistance of MAO coatings depends primarily on elemental composition and phase structure.

参考文献

[1]洪权,郭萍,周伟.钛合金成形技术与应用[J].钛工业进展, 2022,39(5):27-32.HONG Q, GUO P, ZHOU W. Forming technique and application of titanium alloy[J]. Titanium Industry Progress, 2022, 39(5):27-32.

[2]徐全斌,刘诗园.国外航空航天领域钛及钛合金牌号及应用[J].世界有色金属, 2022(16):96-99.XU Q B, LIU S Y. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J].World Nonferrous Metals, 2022(16):96-99.

[3] FATTAH-ALHOSSEINI A, KESHAVARZ M K, MOLAEI M, et al.Plasma electrolytic oxidation(PEO)process on commercially pure Ti surface:effects of electrolyte on the microstructure and corrosion behavior of coatings[J]. Metallurgical and Materials Transactions A,2018, 49(10):4966-4979.

[4]才文兰,史海兰,王振霞,等.纳米ZrO2微粒对TC4合金表面微弧氧化陶瓷膜层耐蚀及耐磨性能的影响[J].表面技术, 2019, 48(7):89-96, 141.CAI W L, SHI H L, WANG Z X, et al. Effect of nano-ZrO2 particles on corrosive and abrasive performances of the micro-arc oxidized ceramic film on TC4 alloy surface[J]. Surface Technology, 2019, 48(7):89-96, 141.

[5] DAI H L, SHI S W, YANG L, et al. Recent progress on the corrosion behavior of metallic materials in HF solution[J]. Corrosion Reviews,2021, 39(4):313-337.

[6]林翠,胡舸,梁静,等. TC1和TC4钛合金腐蚀加工溶解行为研究[J].航空材料学报, 2010, 30(6):43-50.LIN C, HU G, LIANG J, et al. Dissolution behavior of corrosion processing for TC1 and TC4 titanium alloy[J]. Journal of Aeronautical Materials, 2010, 30(6):43-50.

[7] STRAUMANIS M E, CHEN P C. The corrosion of titanium in acids:the rate of dissolution in sulfuric, hydrochloric, hydrobromic and hydroiodic acids[J]. Corrosion, 1951, 7(7):229-237.

[8] YANG S L, DUAN Y F, WANG P, et al. Effect of NdCl3 on characteristics of micro-arc oxidation coating formed on TC4 alloy[J].Metals&Corrosion, 2024, 59(18):7931-7944.

[9] DOOLABI D S, EHTESHAMZADEH M, MIRHOSSEINI S M M.Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum[J]. Journal of Materials Engineering and Performance, 2012, 21(10):2195-2202.

[10]董海荣,马颖,王晟,等.氟化钾对AZ91D镁合金微弧氧化膜的生长及微观结构的影响[J].稀有金属材料与工程, 2018, 47(1):249-254.DONG H R, MA Y, WANG S, et al. Effect of potassium fluoride on growth and microstructure of MAO coatings on AZ91D magnesium alloys[J]. Rare Metal Materials and Engineering, 2018, 47(1):249-254.

[11] ZHAI D J, DU D F, DOU H Q. Effect of Na F additive on the micro/nano-structure and properties of the microarc oxidation coating on Ti6Al4V alloy[J]. Modern Physics Letters B, 2019, 33(22):1950265.

[12]马颖,冯君艳,马跃洲,等.镁合金微弧氧化膜耐蚀性表征方法的对比研究[J].中国腐蚀与防护学报, 2010, 30(6):442-448.MA Y, FENG J Y, MA Y Z, et al. Comparative study on characterization of corrosion resistance of micro-arc oxidation coatings on magnesium alloys[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(6):442-448.

[13]衡志丹,马颖,欧凯奇,等. OH-/F-比与2的关系对铝合金微弧氧化膜层的影响[J].表面技术, 2024, 53(18):100-115.HENG Z D, MA Y, OU K Q, et al. Effect of the relationship between the ratio of OH-/F-and2on micro-arc oxidation coatings on aluminum alloys[J]. Surface Technology, 2024, 53(18):100-115.

[14] WU T, BLAWERT C, SERDECHNOVA M, et al. Role of polymorph microstructure of Ti6Al4V alloy on PEO coating formation in phosphate electrolyte[J]. Surface&Coatings Technology, 2021, 428:127890.

[15] XIE W, LI R, XU Q Y. Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation[J]. Scientific Reports, 2018, 8:8752.

[16] IMASHUKU S, FUKUMOTO M, NAKAJIMA K, et al. Characterization of α-Al2O3 in structural isomers of alumina formed by oxidation of Fe–Cr–Al alloys[J]. ISIJ International, 2022, 62(9):1881-1886.

[17] WANG Z F, SHEN J, XU B, et al. Thermally driven amorphouscrystalline phase transition of carbonized polymer dots for multicolor room-temperature phosphorescence[J]. Advanced Optical Materials,2021, 9(16):2100421.

[18] SU Y, KONG F T, WANG Z B, et al. Oriented porous anodic oxide layers on Ti–50Al with outstanding oxidation resistance at 800℃[J].Corrosion Science, 2019, 159:108146.

[19] LI Q B, YANG W B, LIU C C, et al. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy:effects of electrolytes[J]. Surface and Coatings Technology,2017, 316:162-170.

[20]罗远辉,刘长河,王武育,等.钛化合物[M].北京:冶金工业出版社, 2011.LUO Y H, LIU C H, WANG W Y, et al. Titanium Compounds[M].Beijing:Metallurgical Industry Press, 2011.

基本信息:

DOI:10.19289/j.1004-227x.2025.09.003

中图分类号:TG174.4

引用信息:

[1]欧凯奇,马颖,邵珠倩,等.钛合金微弧氧化膜层在酸性介质中耐蚀性的对比研究[J].电镀与涂饰,2025,44(09):21-32.DOI:10.19289/j.1004-227x.2025.09.003.

基金信息:

甘肃省科技重大专项(22ZD6GA008)

检 索 高级检索