| 0 | 0 | 7 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]骨科内植物经常用于骨科疾病的治疗中。本文旨在总结内植物表面纳米织构吸附能力的建模方法及电化学加工技术的研究进展,为开发高结合性能的植入体表面提供参考。[方法]综述了骨科内植物表面织构吸附能力的建模方法,并概述了阳极氧化、微弧氧化、电化学压印光刻、原子层沉积等电化学加工技术在骨科内植物表面纳米织构制备中的应用。[结果]通过建模分析可从分子到宏观尺度揭示蛋白吸附机制与表面形貌、电荷分布之间的关系。电化学加工技术能够在钛等金属表面构建不同形貌的纳米结构,有效提高内植物表面的抗菌性、耐蚀性和生物相容性,从而增强骨结合能力。[结论]骨科内植物表面纳米织构电化学加工制备技术及其吸附能力建模能够突破传统骨科内植物设计和工艺的限制,其应用有利于推动骨科内植物的升级换代。
Abstract:[Objective] Orthopaedic implants are widely used in the treatment of orthopaedic diseases. This paper aims to review the modeling methods for the adsorption capacity of nanostructured surfaces on implants and the progress in electrochemical processing technologies, so as to provide references for developing implant surfaces with enhanced bonding performance. [Method] The modeling approaches for evaluating the adsorption capacity of surface textures on orthopaedic implants were reviewed. The applications of electrochemical processing techniques such as anodic oxidation, micro-arc oxidation, electrochemical imprint lithography, and atomic layer deposition, and son, in fabricating surface nanostructures were introduced. [Result] The relationship between protein adsorption mechanisms and surface morphology and charge distribution could be revealed across molecular to macroscopic scales through modeling. Electrochemical techniques enabled the construction of diverse nanostructures on titanium and other metal surfaces, effectively improving the antibacterial properties, corrosion resistance, and biocompatibility of implants, thereby enhancing the osseointegration capability. [Conclusion] The surface nanotexturing by electrochemical technologies and modeling of adsorption capacity for orthopaedic implant can overcome the limitations of traditional implant design and manufacturing. Their application is conducive to promoting the advancement of next-generation orthopaedic implants.
[1]郭福运.髋关节的解剖学分析及其在运动医学中的临床意义[J].中国医药导刊, 2012, 14(11):1923, 1925.GUO F Y. Anatomy analysis of hip joints and its clinical significance in sports medicine[J]. Chinese Journal of Medicinal Guide, 2012, 14(11):1923, 1925.
[2]魏宝刚,齐岩松,徐永胜,等.人工髋关节置换中假体材料的选择及应用进展[J].生物骨科材料与临床研究, 2020, 17(4):54-58.WEI B G, QI Y S, XU Y S, et al. Progress in selection and application of prosthesis materials in artificial hip joint replacement[J].Orthopaedic Biomechanics Materials and Clinical Study, 2020, 17(4):54-58.
[3]WANG Y, WEN C E, HODGSON P, et al. Biocompatibility of TiO2nanotubes with different topographies[J]. Journal of Biomedical Materials Research Part A, 2014, 102(3):743-751.
[4]FLOREA D A, ALBULET D, GRUMEZESCU A M, et al. Surface modification:a step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties[J]. Materials Chemistry and Physics, 2020,243:122579.
[5]HOYOS-NOGUÉS M, VELASCO F, GINEBRA M P, et al.Regenerating bone via multifunctional coatings:the blending of cell integration and bacterial inhibition properties on the surface of biomaterials[J]. ACS Applied Materials&Interfaces, 2017, 9(26):21618-21630.
[6]DEVGAN S, SIDHU S S. Evolution of surface modification trends in bone related biomaterials:a review[J]. Materials Chemistry and Physics, 2019, 233:68-78.
[7]ZHANG H G, CHEN K, KANG C W, et al. Atomic-scale understanding of microstructural evolution in electrochemical additive manufacturing of metallic nickel[J]. Materials&Design, 2024, 245:113288.
[8]NEUBERGEROVÁM, PLESKOT R. Plant protein-lipid interfaces studied by molecular dynamics simulations[J]. Journal of Experimental Botany, 2024, 75(17):5237-5250.
[9]HARTVIG R A, WEERT M V D,ØSTERGAARD J, et al. Protein adsorption at charged surfaces:the role of electrostatic interactions and interfacial charge regulation[J]. Langmuir, 2011, 27(6):2634-2643.
[10]KABASO D, GONGADZE E, PERUTKOVÁŠ, et al. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14(5):469-482.
[11]WANG Z W, YAN Y, QIAO L J. Protein adsorption on implant metals with various deformed surfaces[J]. Colloids and Surfaces B:Biointerfaces, 2017, 156:62-70.
[12]GESSNER A, LIESKE A, PAULKE B R, et al. Influence of surface charge density on protein adsorption on polymeric nanoparticles:analysis by two-dimensional electrophoresis[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54(2):165-170.
[13]SUYETIN M, RAUWOLF S, SCHWAMINGER S P, et al. Peptide adsorption on silica surfaces:simulation and experimental insights[J].Colloids and Surfaces B:Biointerfaces, 2022, 218:112759.
[14]BASU S, BASU B, MAITI P K. A computational study on strontium ion modified hydroxyapatite–fibronectin interactions[J]. Physical Chemistry Chemical Physics, 2022, 24(45):27989-28002.
[15]OMEJE I S, IABBADEN D, GANSTER P, et al. Atomistic simulations of wetting dynamics of water nanodroplets on nanotextured titanium:implications for medical implants[J]. ACS Applied Nano Materials,2024, 7(21):24426-24436.
[16]BARBAULT F, BRÉMOND E, REY J, et al. Docksurf:a molecular modeling software for the prediction of protein/surface adhesion[J].Journal of Chemical Information and Modeling, 2023, 63(16):5220-5231.
[17]WU X, WANG C Y, HAO P F, et al. Mesoscopic model for reversible adsorption stage of albumin and fibrinogen on TiO2 surface[J]. The Journal of Physical Chemistry B, 2024, 128(8):1900-1914.
[18]SHAO Q, HALL C K. Protein adsorption on nanoparticles:model development using computer simulation[J]. Journal of Physics:Condensed Matter, 2016, 28(41):414019.
[19]SUN Y D, WANG Y, JI C H, et al. The impact of hydroxyapatite crystal structures and protein interactions on bone's mechanical properties[J].Scientific Reports, 2024, 14(1):9786.
[20]VU T N, LE P H P, PHAM D N P, et al. Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants[J].Chemosphere, 2022, 307(P2):135856.
[21]XIONG Q X, REN Y, XIA Y F, et al. Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface[J]. Chinese Journal of Chemical Engineering, 2022, 50:369-378.
[22]ZHANG H G, MA B Z, ZHAN T Y, et al. Towards understanding the coupling interaction between thickness non-uniformity and flatness of wafer-scale electroformed Ni–Co mold:rom grain structures to internal stress[J]. Journal of Materials Processing Technology, 2025, 337:118713.
[23]GARDUÑO-JUAREZ R, TOVAR-ANAYA D O, PEREZ-AGUILAR J M, et al. Molecular dynamic simulations for biopolymers with biomedical applications[J]. Polymers, 2024, 16(13):1864.
[24]CANPOLAT C, TATLISOZ M M. Controlled protein adsorption on a silica microparticle[J]. Electrophoresis, 2021, 42(7/8):1021-1031.
[25]CANPOLAT C, TATLISOZ M M. Size-dependent protein adsorption on a nanoparticle[J]. IEEE Transactions on NanoBioscience, 2023,22(3):597-602.
[26]ATIF A R, LA CIS U, ENGQVIST H, et al. Experimental characterization and mathematical modeling of the adsorption of proteins and cells on biomimetic hydroxyapatite[J]. ACS Omega, 2022,7(1):908-920.
[27]JAIN K, PANDEY A, WANG H, et al. TiO2 nano-biopatterning reveals optimal ligand presentation for cell-matrix adhesion formation[J].Advanced Materials, 2024, 36(21):2309284.
[28]KÖRTGE A, ELTER P, LANGE R, et al. Simulation of the electric field distribution near a topographically nanostructured titanium-electrolyte interface:influence of the passivation layer[J]. Journal of Nanomaterials, 2013, 2013(1):820914.
[29]LUO J J, WALKER M, XIAO Y B, et al. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix—a review[J]. Bioactive materials, 2022, 15:145-159.
[30]LUO J J, ZHAN S D, GAO X S, et al. Ti O2 nanotopography-driven osteoblast adhesion through coulomb’s force evolution[J]. ACS Applied Materials&Interfaces, 2022, 14(30):34400-34414.
[31]GAO X S, ZHAO Y H, WANG M, et al. Theoretical modeling approach for adsorption of fibronectin on the nanotopographical implants[J]. Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine, 2023, 237(9):1102-1115.
[32]GONGADZE E, KABASO D, BAUER S, et al. Adhesion of osteoblasts to a nanorough titanium implant surface[J]. International Journal of Nanomedicine, 2011, 6:1801-1816.
[33]VELTEN D, BIEHL V, AUBERTIN F, et al. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol–gel coating techniques and their characterization[J]. Journal of Biomedical Materials Research, 2002, 59(1):18-28.
[34]LI W S, ZHANG S Q, LI F. Effect of chemical polishing on the formation of TiO2 nanotube arrays using Ti mesh as a raw material[J].Nanomaterials, 2024, 14(23):1893.
[35]QIAN Q, LIN Y, XIONG Z L, et al. Internal anodization of porous Ti to fabricate immobilized TiO2 nanotubes with a high specific surface area[J]. Electrochemistry Communications, 2022, 135:107201.
[36]RIBEIRO B, OFFOIACH R, ROSSETTI S, et al. On growth and morphology of Ti O2 nanotubes on CP-Ti by anodic oxidation in ethylene glycol electrolyte:influence of electrolyte aging and anodization parameters[J]. Materials, 2022, 15(9):3338.
[37]TORRES-AVILA I P, SOUZA R M, CHINO-ULLOA A, et al. Effect of anodization time on the adhesion strength of titanium nanotubes obtained on the surface of the Ti–6Al–4V alloy by anodic oxidation[J].Crystals, 2023, 13(7):1059.
[38]XU J W, HU J L, LIU S B, et al. Effect of anodic oxidation on antibacterial properties and biocompatibility of Ti–13Nb–13Zr–3Cu for biomedical application[J]. Advanced Engineering Materials, 2024,26(23):2401273.
[39]MA Z, YAN Y D, SHI C, et al. Effect of anodic oxidation pulse voltage on antibacterial properties and biocompatibility of Ti–Ag alloy[J].Coatings, 2024, 14(4):405.
[40]XIE Y C, LU M, MAO X R, et al. Enhancing the antibacterial properties and biocompatibility of Ti–Cu alloy by roughening and anodic oxidation[J]. Metals, 2022, 12(10):1726.
[41]CAO S, ZHANG Z M, ZHANG J Q, et al. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation[J]. Rare Metals, 2022, 41(2):594-609.
[42]TAO B L, LAN H Y, ZHOU X L, et al. Regulation of TiO2 nanotubes on titanium implants to orchestrate osteo/angio-genesis and osteoimmunomodulation for boosted osseointegration[J]. Materials&Design, 2023, 233:112268.
[43]LI G Q, MA F C, LIU P, et al. Review of micro-arc oxidation of titanium alloys:mechanism, properties and applications[J]. Journal of Alloys and Compounds, 2023, 948:169773.
[44]XIE Y C, WANG X D, CUI S S, et al. Effect of micro-arc oxidation on antimicrobial properties and biocompatibility of biomedical Ti–x Fe alloys[J]. Surface and Coatings Technology, 2024, 476:130174.
[45]ANDRADE C S, BORGES M H R, SILVA J P, et al. Micro-arc driven porous ZrO2 coating for tailoring surface properties of titanium for dental implants application[J]. Colloids and Surfaces B:Biointerfaces,2025, 245:114237.
[46]KOBAYASHI M, SHIMABUKURO M, AOKI S, et al. Micro-arc oxidation for balancing antibacterial activity and bone formation on titanium surface[J]. Materials Letters, 2024, 377:137531.
[47]TSUTSUMI Y, NIINOMI M, NAKAI M, et al. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy[J]. Applied Surface Science, 2012, 262:34-38.
[48]ZHANG G, HUANG S, LI X S, et al. Oxide ceramic coatings with amorphous/nano-crystalline dual-structures prepared by micro-arc oxidation on Ti–Nb–Zr medium entropy alloy surfaces for biomedical applications[J]. Ceramics International, 2023, 49(11):18114-18124.
[49]TANG J C, WU Z Z, YAO X Y, et al. From bio-inertness to osseointegration and antibacterial activity:A one-step micro-arc oxidation approach for multifunctional Ti implants fabricated by additive manufacturing[J]. Materials&Design, 2022, 221:110962.
[50]翦奉林,金凡亚,冯军,等.微弧氧化Ti O2涂层微结构对细胞黏附性能的影响[J].材料保护, 2023, 56(10):123-129.JIAN F L, JIN F Y, FENG J, et al. Effect of microstructure of microarc oxidation TiO2 coating on cell adhesion properties[J]. Materials Protection, 2023, 56(10):123-129.
[51]翦奉林,冯军,李必文,等. TA2纯钛微弧氧化制备Ti O2涂层的性能研究[J].材料保护, 2023, 56(1):64-71.JIAN F L, FENG J, LI B W, et al. Study on properties of TiO2 coating on pure titanium TA2 prepared by micro-arc oxidation[J]. Materials Protection, 2023, 56(1):64-71.
[52]JIA P F, UMEZAKI R, MURATA J. Direct micropatterning on a titanium surface through electrochemical imprint lithography with a polymer electrolyte membrane stamp[J]. Microelectronic Engineering,2022, 257:111752.
[53]UMEZAKI R, MURATA J. Electrochemical imprint lithography on Si surface using a patterned polymer electrolyte membrane[J]. Materials Chemistry and Physics, 2021, 259:124081.
[54]TSUJI A, MORIMOTO E, TAKIZAWA M, et al. Cu direct nanopatterning using solid-state electrochemical dissolution at the anode/polymer electrolyte membrane interface[J]. Advanced Materials Interfaces, 2024, 11(9):2300896.
[55]FUJII T, TSUJI A, TAKIZAWA M, et al. Solid-state electrochemical oxidation with polyelectrolyte membrane stamps for micro-/nanoscale pattern formation on Au surfaces[J]. Nanoscale, 2024, 16(40):18811-18823.
[56]ZHANG L, ZHANG J, YUAN D, et al. Electrochemical nanoimprint lithography directly on n-type crystalline silicon(111)wafer[J].Electrochemistry Communications, 2017, 75:1-4.
[57]OVIROH P O, AKBARZADEH R, PAN D, et al. New development of atomic layer deposition:processes, methods and applications[J].Science and Technology of Advanced Materials, 2019, 20(1):465-496.
[58]PHILIP A, LONE U, PARTANEN O, et al. Highly stable and conformal Ti–organic thin films from sustainable precursors via atomic/molecular layer deposition towards green energy applications[J]. Chemical Communications, 2025, 61(5):917-920.
[59]GAO L J, WU K, WEI X, et al. Evaluation of antibacterial activity and biocompatibility of nano-titanium dioxide coatings prepared by atomic layer deposition for dental titanium abutments[J]. Surfaces and Interfaces, 2024, 48:104280.
[60]LIU L T, BHATIA R, WEBSTER T J. Atomic layer deposition of nanoTi O2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants[J]. International Journal of Nanomedicine, 2017, 12:8711-8723.
[61]PAN Y, CAO L L, CHEN L B, et al. Enhanced bacterial and biofilm adhesion resistance of ALD nano-TiO2 coatings compared to AO coatings on titanium abutments[J]. International Journal of Nanomedicine, 2024, 19:11143-11159.
[62]CAPEK J, SEPÚLVEDA M, BACOVA J, et al. Ultrathin TiO2 coatings via atomic layer deposition strongly improve cellular interactions on planar and nanotubular biomedical Ti substrates[J]. ACS Applied Materials&Interfaces, 2024, 16(5):5627-5636.
[63]MAKURAT-KASPROLEWICZ B, OSSOWSKA A. Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications:a review of anodic and plasma electrolytic oxidation methods[J]. Materials Today Communications, 2023, 34:105425.
基本信息:
DOI:10.19289/j.1004-227x.2026.01.006
中图分类号:TB383.1;R318;TG662
引用信息:
[1]史筱红,李政伟,孙铁伟,等.骨科内植物表面纳米织构吸附能力建模及电化学加工方法[J].电镀与涂饰,2026,45(01):36-46.DOI:10.19289/j.1004-227x.2026.01.006.
基金信息:
北京工业大学国际科研合作种子基金(2021A10)