nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.44 1-9
掩膜-化学刻蚀-阳极氧化方法制备耐磨TC4钛合金超疏水表面
基金项目(Foundation):
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.09.001
摘要:

[目的]通过复合工艺来提高TC4钛合金超疏水表面的整体力学性能。[方法]首先使用掩膜法在钛合金表面预处理出阵列保护性结构,接着使用化学刻蚀法进行微米级结构制备,再使用阳极氧化法制备出纳米级结构,最终在试样表面形成的结构组成层级递进式复杂形貌。通过表面润湿性测量、扫描电镜(SEM)图像分析,以及防冰性、耐蚀性、耐磨性和抗冲击性测试,对单一化学刻蚀、单一阳极氧化、化学刻蚀-阳极氧化和掩膜-化学刻蚀-阳极氧化4种方法制备出的TC4钛合金超疏水表面进行性能对比。[结果]化学刻蚀法制备出的超疏水表面的水接触角为153.0°,滚动角为7.6°;阳极氧化法制备出的超疏水表面的水接触角为155.4°,滚动角为5.2°;无掩膜辅助的化学刻蚀-阳极氧化法制备出的超疏水表面的水接触角为157.6°,滚动角小于2°;掩膜-化学刻蚀-阳极氧化法制备出的超疏水表面的水接触角为163.1°,滚动角为4.5°。2种及3种方法复合制备出的超疏水表面的疏水性均优于单一方法制备的超疏水表面。4种方法制备出的超疏水表面均具有良好的防冰性,耐蚀性都优于TC4钛合金原始样片,尤其是化学刻蚀-阳极氧化和掩膜-化学刻蚀-阳极氧化2种复合方法处理后的超疏水试样。具有层级保护性结构的超疏水表面可在经历18次线性磨损及承受400 g落沙冲击后,仍具有超疏水性能,水接触角保持在150°以上,滚动角在10°左右。[结论]掩膜-化学刻蚀-阳极氧化法制备出的具有层级递进式结构的超疏水表面相比单一方法制备的超疏水表面在整体疏水性、耐蚀性、耐磨性、抗冲击性等方面均有大幅提升,与无掩膜辅助的复合方法所制备的超疏水表面相比具有更优异的力学性能。

Abstract:

[Objective] To enhance the overall mechanical properties of superhydrophobic surfaces on TC4 titanium alloy through a composite processing strategy. [Method] A hierarchical and progressive complex structure was constructed via a three-step process: 1) creating an arrayed protective pattern on the surface of TC4 titanium alloy using a masking technique; 2) fabricating micro-scale structures by chemical etching; and 3) generating nano-scale features via anodization. The wettability measurement, scanning electron microscopic(SEM) observation, anti-icing test, corrosion resistance test, wear resistance test, and impact resistance test were carried out for comparing the performances of superhydrophobic surfaces prepared by four methods, namely single chemical etching, single anodization, chemical etching–anodization, and masking–chemical etching–anodization. [Result] The superhydrophobic surface formed by chemical etching had a contact angle of 153.0° and a sliding angle of 7.6°. The superhydrophobic surface prepared by anodization method had a contact angle of 155.4° and a sliding angle of 5.2°. The superhydrophobic surface fabricated by chemical etching and anodization without masking assistance had a contact angle of 157.6° and a sliding angle of less than 2.0°. The superhydrophobic surface constructed by the combination of masking, chemical etching, and anodization had a contact angle of 163.1° and a sliding angle of 4.5°. The TC4 titanium alloy surfaces treated by the combination of two or three methods had better hydrophobicity than that treated only by chemical etching or anodization. The superhydrophobic surfaces prepared by the four methods, especially by two composite processing methods, all showed good anti-icing properties and superior corrosion resistance to the untreated TC4 titanium alloy. The superhydrophobic surface with a hierarchical protective structure maintained superhydrophobicity(contact angle >150°, sliding angle ≈ 10°) after 18 linear abrasion cycles and withstood a sand falling impact of 400 g. [Conclusion] Compared with the superhydrophobic surfaces prepared by single-step methods, the superhydrophobic surface with a hierarchical and progressive structure prepared by the masking–chemical etching–anodization approach has better overall hydrophobicity, corrosion resistance, wear resistance, and impact resistance. The mask-assisted composite process also outperforms the mask-free one in mechanical properties.

参考文献

[1] YANG X W, LIN B, ZHANG H L, et al. Influence of stress on the corrosion behavior of Ti alloys:a review[J]. Journal of Alloys and Compounds, 2024, 985:173346.

[2] LI G, GUO Y Y, RUI S S, et al. High-temperature fatigue behavior of TC17 titanium alloy and influence of surface oxidation[J].International Journal of Fatigue, 2023, 176:107896.

[3] JACOBS Z, SCHIPANI R, PASTRAMA M, et al. Evaluation of biocompatibility and osseointegration of multi-component TiAl6V4titanium alloy implants[J]. Journal of Orthopaedic Research, 2025,43(1):139-152.

[4]袁天经,张欣蔚,景家瑞,等.超高强钛合金疲劳行为研究进展[J].材料开发与应用, 2024, 39(4):110-122.YUAN T J, ZHANG X W, JING J R, et al. Research progress on fatigue behavior of ultra-high strength titanium alloys[J].Development and Application of Materials, 2024, 39(4):110-122.

[5] VLASOV I V, YEGORUSHKIN V Y, PANIN V Y, et al.Fractography, fracture toughness and structural turbulence under low-temperature shock loading of a nonequilibrium titanium alloy Ti–6Al–4V[J]. Mechanics of Solids, 2020, 55(5):633-642.

[6] CHAKRABORTY D, TIRUMALA T, CHITRAL S, et al. The state of the art for wire arc additive manufacturing process of titanium alloys for aerospace applications[J]. Journal of Materials Engineering and Performance, 2022, 31(8):6149-6182.

[7] MARIN E, LANZUTTI A. Biomedical applications of titanium alloys:a comprehensive review[J]. Materials, 2024, 17(1):114.

[8]李永华,张文旭,陈小龙,等.海洋工程用钛合金研究与应用现状[J].钛工业进展, 2022, 39(1):43-48.LI Y H, ZHANG W X, CHEN X L, et al. Research and application status of titanium alloys for marine engineering[J]. Titanium Industry Progress, 2022, 39(1):43-48.

[9]于庆华,于世胜,王帅,等.纳秒激光制备超疏水TC4钛合金表面的抗结霜性能[J].机械工程材料, 2022, 46(6):84-90, 97.YU Q H, YU S S, WANG S, et al. Frost resistance of superhydrophobic TC4 titanium alloy surface by nanosecond laser[J]. Materials for Mechanical Engineering, 2022, 46(6):84-90, 97.

[10] TIAN Z, WANG L Z, ZHU D Y, et al. Passive anti-icing performances of the same superhydrophobic surfaces under static freezing, dynamic supercooled-droplet impinging, and icing wind tunnel tests[J]. ACS Applied Materials&Interfaces, 2023, 15(4):6013-6024.

[11] NAGAPPAN S, HA C S. Superhydrophobic hybrid micronanocomposites with various applications[J]. Macromolecular Symposia, 2015, 358(1):202-211.

[12] MA Z C, ZHAO S T, DU H R, et al. Simultaneous realization of superhydrophobicity and multiple droplet bouncing through laser ablation, organic adsorption and fluorination treatment[J]. Materials Today Physics, 2022, 26:100739.

[13] SHI Y L, YANG W, FENG X J, et al. Fabrication of superhydrophobic ZnO nanorods surface with corrosion resistance via combining thermal oxidation and surface modification[J]. Materials Letters, 2015, 151:24-27.

[14]张雪梅,梅新奇,王广,等.喷涂法制备超疏水涂层及其在多种基底表面的应用研究[J].化工新型材料, 2022, 50(1):277-281, 286.ZHANG X M, MEI X Q, WANG G, et al. Preparation and application of superhydrophobic coating sprayed on the surface of various substrates[J]. New Chemical Materials, 2022, 50(1):277-281, 286.

[15]马宁,秦志程,张正祎.电化学刻蚀超疏水表面的多目标优化[J].沈阳航空航天大学学报, 2022, 39(4):19-26.MA N, QIN Z C, ZHANG Z Y. Multi-objective optimization of electrochemical etching of superhydrophobic surface[J]. Journal of Shenyang Aerospace University, 2022, 39(4):19-26.

[16] KIM H M, CHOI J W, KWON J S, et al. Super-hydrophobic properties of aluminum surfaces synthesized by a two-step chemical etching process[J]. Journal of Nanoscience and Nanotechnology,2019, 19(10):6452-6457.

[17] LU Y, XU W J, SONG J L, et al. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification[J]. Applied Surface Science, 2012, 263:297-301.

[18] GAO Y Z, SUN Y W, GUO D M. Facile fabrication of superhydrophobic surfaces with low roughness on Ti–6Al–4V substrates via anodization[J]. Applied Surface Science, 2014, 314:754-759.

[19] WANG J, CHEN H. Fabrication of a superhydrophobic surface by a template-assisted chemical deposition method[J]. Materials Express,2020, 10(8):1346-1351.

[20] WANG J D, LI A, CHEN H S, et al. Synthesis of biomimetic superhydrophobic surface through electrochemical deposition on porous alumina[J]. Journal of Bionic Engineering, 2011, 8(2):122-128.

[21]赵欣,黄成超,李梦,等.微纳超疏水钛合金表面的制备及其性能研究[J].表面技术, 2023, 52(3):360-369.ZHAO X, HUANG C C, LI M, et al. Fabrication and properties of micro-nano superhydrophobic titanium alloy surface[J]. Surface Technology, 2023, 52(3):360-369.

[22]刘静,邢敏,雷西萍,等.微纳分级结构超疏水铝表面的构筑及其机械稳定性[J].中国有色金属学报, 2022, 32(10):3060-3070.LIU J, XING M, LEI X P, et al. Construction of micro-nano hierarchical structured superhydrophobic aluminum surfaces and its mechanical stability[J]. The Chinese Journal of Nonferrous Metals,2022, 32(10):3060-3070.

[23]于会珠,崔偎偎,白子龙,等.微纳分级结构超疏水金属表面的电沉积构筑及性能[J].中国表面工程, 2021, 34(5):181-187.YU H Z, CUI W W, BAI Z L, et al. Electrodeposition and properties of micro/nanoscale hierarchical structured superhydrophobic metal surface[J]. China Surface Engineering, 2021, 34(5):181-187.

基本信息:

DOI:10.19289/j.1004-227x.2025.09.001

中图分类号:TG174.4

引用信息:

[1]马宁,孙凯伦,孙国雁.掩膜-化学刻蚀-阳极氧化方法制备耐磨TC4钛合金超疏水表面[J].电镀与涂饰,2025,44(09):1-9.DOI:10.19289/j.1004-227x.2025.09.001.

基金信息:

检 索 高级检索