344 | 0 | 50 |
下载次数 | 被引频次 | 阅读次数 |
[目的]不锈钢在高温烧结后表面会形成致密的灰黑色氧化膜,影响后续加工及使用,因此需要采取措施去除该氧化膜。[方法]对高温氧化后的316L不锈钢先进行浸蚀和酸洗处理,再电解抛光。通过正交试验和单因素实验优化了酸洗液的配方和工艺条件。重点研究了电解抛光过程中电流密度和抛光时间对316L不锈钢表面粗糙度和耐蚀性的影响。对比了不同工序处理后316L不锈钢的表面轮廓和微观形貌变化。[结果]较佳的酸洗配方和工艺条件为:盐酸220 mL/L,硫酸70 mL/L,金属盐X 60 g/L,温度70℃,时间6 min。电解抛光的较佳工艺条件为:电流密度50 A/dm2抛光时间85 s。在此条件下处理后,316L不锈钢的表面粗糙度Ra降至0.326 2μm,表面均匀平滑,耐蚀性显著提升。[结论]通过浸蚀和酸洗前处理再电解抛光,可有效去除高温氧化316L不锈钢表面的氧化膜,降低表面粗糙度,并显著提高其耐蚀性。
Abstract:[Objective] The formation of a compact gray-black oxide film on the surface of stainless steel after high-temperature sintering adversely affects its subsequent processing and application. Therefore, corresponding measures needs to be taken to remove the oxide film. [Method] The 316L stainless steel subjected to high-temperature oxidation was treated by etching and pickling prior to electrolytic polishing. The pickling solution composition and process conditions were optimized through orthogonal test and single-factor experiments. The effects of current density and temperature during electrolytic polishing on the surface roughness and corrosion resistance of 316L stainless steel were studied in detail. Additionally, changes in surface profile and microstructure of 316L stainless steel after different processing steps were compared. [Result] The pickling solution composition and process conditions were optimized as follows: hydrochloric acid 220 mL/L, sulfuric acid 70 mL/L, metal salt X 60 g/L, temperature 70℃, and time 6 min. The suitable current density and time for electrolytic polishing was 50 mA/dm2 and 85 s respectively. After being treated under the optimized conditions, the surfaceof 316L stainless steel was uniform and smooth with a surface roughness(Ra)of 0.326 2 μm, and its corrosion resistance was significantly enhanced. [Conclusion] The oxide film on surface of high-temperature oxidized 316L stainless steel can be effectively removed through etching and pickling as pretreatments before electrolytic polishing, not only reducing the surface roughness, but also significantly improve its corrosion resistance.
[1] GRO?WENDT F, BECKER L, R?TTGER A, et al. Impact of the allowed compositional range of additively manufactured 316L stainless steel on processability and material properties[J]. Materials,2021, 14:4074.
[2] JAMALKHANI M, KHADEMITAB M, DASHTGERD I, et al. Hot isostatic pressing of differently sintered binder jetted 316L stainless steel:Microstructure evolution and mechanical properties[J].Materials Today Communications, 2024, 40:109529.
[3] WARDA A N, RODRíGUEZ G S, TORRES B, et al. Effect of molten salts composition on the corrosion behavior of additively manufactured 316L stainless steel for concentrating solar power[J].Metals, 2024, 14(6):639.
[4] TOVAR V J, TIBURCIO G C, BANDA L M, et al. Electrochemical corrosion behavior of passivated precipitation hardening stainless steels for aerospace applications[J]. Metals, 2023, 13(5):835.
[5] KUMAR N V, UTHAYAKUMAR M, KUMARAN S T, et al.Hardness and impact fracture behavior of armor weldment using austenitic stainless steel filler[J]. Human Factors and Mechanical Engineering for Defense and Safety, 2022, 6(1):15.
[6] SULTANA N, NISHINA Y, NIZAMI I Z M. Surface modifications of medical grade stainless steel[J]. Coatings, 2024, 14:248.
[7] DOLZHENKO P D, MISHNEV R V, KAIBYSHEV R O, et al.Advanced martensitic stainless steels for dental instruments[J].Russian Physics Journal, 2023, 66(8):844-851.
[8]弓雪原,张凯,董红军,等.不锈钢玻封连接器密封失效分析及改进[J].机电元件, 2022, 42(4):52-55.GONG X Y, ZHANG K, DONG H J, et al. Failure analysis and structural optimization of sealing in stainless steel glass-to-metal connectors[J]. Electromechanical Components, 2022, 42(4):52-55.
[9] HANBURY D R, WAS S G. Corrosion of 316L stainless steel in high temperature water and steam:effects of simultaneous proton irradiation[J]. Journal of Nuclear Materials, 2024, 600:155274.
[10] HANBURY D R, WAS S G. Corrosion of 316L stainless steel in high temperature water and steam:mechanisms of corrosion[J]. Journal of Nuclear Materials, 2024, 599:155180.
[11] PENG W M, HUANG C P, ZHANG S H, et al. Achieving a super-smooth surface of stainless bearing steel with chemical mechanical polishing via controlling corrosive wear of Fe and Cr[J].Journal of Solid State Electrochemistry, 2023, 27(2):467-477.
[12]马迪,徐龙贵,李树白,等.不锈钢化学抛光液的研究进展[J].材料保护, 2014, 47(9):54-55, 69, 8.MA D, XU L G, LI S B, et al. Research progress of chemical polishing fluid for stainless steel[J]. Material Protection, 2014, 47(9):54-55, 69, 8.
[13]宣宇娜,唐佳斌,冯凯,等.工艺参数对316L不锈钢电解抛光效果的影响[J].电镀与涂饰, 2023, 42(5):47-55.XUAN Y N, TANG J B, FENG K, et al. Effects of process parameters on electrolytic polishing of 316L stainless steel[J]. Electroplating&Finishing, 2023, 42(5):47-55.
[14] CAO X J, XUE M P, QI Z C, et al. Influence of Abrasive Hardness on Chemical Mechanical Polishing of 304 Stainless Steel[J]. Journal of Physics:Conference Series, 2022, 2329(1):012044.
[15] MA C R, YANG Z C, DU Z Y, et al. Ratio of viscosity to water content in solutions:A new indicator for designing of electrolytic polishing solutions for stainless steel[J]. Journal of Materials Research and Technology, 2024, 30:7896-7909.
[16]王保山,商强,满成.固溶处理对选区激光融化316L不锈钢晶间腐蚀性能行为的影响机制[J].工程科学学报, 2024, 46(6):1077-1088.WANG B S, SHANG Q. MAN C. Effect of solution treatment on the intergranular corrosion behavior of 316L stainless steel fabricated by laser melting[J]. Chinese Journal of Engineering, 2024, 46(6):1077-1088.
[17]王扬亚,赵程.奥氏体不锈钢低温渗碳硬化处理后的化学亮化处理[J].表面技术, 2016, 45(1):106-110.WANG Y Y, ZHAO C. Chemical brightening treatment of austenitic stainless steel after low-temperature plasma carburizing[J]. Surface technology, 2016, 45(1):106-110.
[18]刘振,张迪生,全一能.阴极电化学浸蚀去除430不锈钢板材表面硅氧层的研究[J].电镀与涂饰, 2023, 42(5):56-61.LIU Z, ZHANG D S, QUAN Y N. Removal of silicon oxygen layer on surface of 430 stainless steel by cathodic electroetching[J].Electroplating&Finishing, 2023, 42(5):56-61.
[19]于亚洲,李志永,李德佳,等.选区激光熔化316L不锈钢随形冷却通道电解抛光工艺优化[J].电镀与涂饰, 2024, 43(5):65-72.YU Y Z, LI Z Y, LI D J, et al. Optimization of electrolytic polishing process for 316L stainless steel conformal cooling channel prepared by selective laser melting[J]. Electroplating&Finishing, 2024, 43(5):65-72.
[20]陈志昂,苗京涛,汪琪龙,等.三维打印316L不锈钢血管支架的电解抛光及力学性能[J].生物医学工程学杂志, 2023, 40(3):552-558.CHEN Z A, MIAO J T, WANG Q L, et al. Three-dimensional printed316L stainless steel cardiovascular stent’s electrolytic polishing and its mechanical properties[J]. Journal of Biomedical Engineering, 2023,40(3):552-558.
[21]柳小祥,范文俊,徐招,等. 316L不锈钢金属双极板的电解抛光工艺[J].电镀与精饰, 2020, 42(3):6-11.LIU X X, FAN W J, XU Z, et al. Electro-polishing of 316L stainless steel metal bipolar plate[J]. Plating&Finishing, 2020, 42(3):6-11.
[22]鲁文婷,陈亚军,刘燕,等. 17-4PH航空紧固件表面氧化皮去除工艺研究[J].电镀与精饰, 2021, 43(1):47-54.LU W T, CHEN Y J, LIU Y, et al. Study on the removal process of oxide scale on the 17-4PH aviation fasteners[J]. Plating&Finishing,2021, 43(1):47-54.
[23]江洪涛,宋路路,徐玉娟.玻璃封接组件表面处理工艺难点探讨[J].电镀与涂饰, 2016, 35(5):256-261.JIANG H T, SONG L L, XU Y J. Discussion on the difficulties of surface treatment process of glass sealing components[J].Electroplating&Finishing, 2016, 35(5):256-261.
[24]徐苏莉,徐玉娟,张斌.不锈钢玻璃封接组件化学抛光工艺[J].电镀与精饰, 2016, 38(3):17-20.XU S L, XU Y J, ZHANG B. Chemical polishing process of stainless steel for assembly sealing glass[J]. Plating&finishing, 2016, 38(3):17-20.
[25]丁一冉,于洪泰.不锈钢烧结组件的表面处理工艺研究[J].清洗世界, 2020, 36(7):100-102.DING Y R, YU H T. Study on surface treatment technology of sintered stainless steel components[J]. Cleaning World, 2020, 36(7):100-102.
[26]于艳辉.不锈钢表面抛光技术研究概述[J].科技经济市场, 2017(12):20-21.YU Y H. Research overview of stainless steel surface polishing technology[J]. Science&Technology Ecnony Market, 2017(12):20-21.
[27]贾波,苏娜,冯庆,等.化学酸洗法去除不锈钢玻璃封接件表面氧化膜的工艺研究[J].科技创新与应用, 2018(23):113-114, 116.JIA B, SU N, FENG Q, et al. Study on the process of removing the oxide film on the surface of stainless steel glass seal by chemical pickling[J]. Technology and application, 2018,(23):113-114, 116.
[28]谢霞,乔军,贺立红.热轧奥氏体不锈钢无硝酸酸洗工艺机理分析[J].轧钢, 2020, 37(2):64-68.XIE X, QIAO J, HE L H. Analysis of mechanism in pickling process without HNO3 for hot rolled austenitic stainless steel[J]. Steel rolling,2020, 37(2):64-68.
[29] HE S L, JIANG D M, SUN Z Y. Effect of deformation-induced martensite on protective performance of passive film on 304 stainless steel[J]. International Journal of Electrochemical Science, 2018, 13:4700-4719.
[30] LIU F, XU J L, WANG F P, et al. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy[J].Surface and Coatings Technology, 2010, 204(20):3294-3299.
[31] LIANG J, SRINIVASAN P B, BLAWERT C, et al. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes[J]. Electrochimica Acta, 2009, 54(14):3842-3850.
基本信息:
DOI:10.19289/j.1004-227x.2025.02.004
中图分类号:TG175
引用信息:
[1]张硕,梁潇,束春慧等.高温氧化316L不锈钢电解抛光工艺[J].电镀与涂饰,2025,44(02):20-29.DOI:10.19289/j.1004-227x.2025.02.004.
基金信息: