nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2026, 01, v.45 79-85
SiC颗粒预处理对Co–SiC复合电镀层硬度和耐磨性的影响
基金项目(Foundation): 国家商用飞机制造工程技术研究中心创新基金(COMAC-SFGS-2023-2597)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2026.01.010
摘要:

[目的]研究碳化硅(SiC)颗粒预处理对其在钴基复合镀层中强化行为的影响,旨在通过调控颗粒表面性质来提升复合镀层的硬度与耐磨性。[方法]采用NaOH溶液对Si C颗粒进行去氧化层和粗化两种预处理,分析了处理后颗粒的亲水性、分散性及Zeta电位;以镀层的显微硬度和耐磨性为指标,通过正交试验优化了Co–SiC复合电镀工艺。[结果]采用60 g/L粗化的SiC颗粒作为第二相,在镀液pH为5.0、电流密度4 A/dm2的条件下电镀1 h时,所得Co–SiC复合镀层的显微硬度较高(405.3 HV),耐磨性最优。[结论]本研究为开发高性能环保型耐磨镀层提供了有效的策略。

Abstract:

[Objective] The effect of silicon carbide(SiC) particle pretreatment on the strengthening behavior of cobalt-based composite coatings was studied, aiming to improve the hardness and wear resistance of the coatings by modifying the particle surface properties. [Method] Si C particles were pretreated by oxide film removal and roughening using a NaOH solution. The hydrophilicity, dispersibility, and Zeta potential of the treated particles were analyzed. The Co–SiC composite electroplating process was optimized through orthogonal experiment using the microhardness and wear resistance of the coatings as indicators. [Result] The Co–Si C composite coating electroplated with 60 g/L of roughened SiC particles as reinforcement phase at pH 5.0 and current density 4 A/dm2 for 1 hour demonstrated a high microhardness(405.3 HV) and optimal wear resistance. [Conclusion] This study provides an effective strategy for developing high-performance, environmentally friendly, and wear-resistant coatings.

参考文献

[1]RAHMAN A, CHOWDHURY M A, HOSSAIN N, et al. A review of the tribological behavior of electrodeposited cobalt(Co)based composite coatings[J]. Composites Part C:Open Access, 2022, 9:100307.

[2]JENCZYK P, GRZYWACZ H, MILCZAREK M, et al. Mechanical and tribological properties of co-electrodeposited particulate-reinforced metal matrix composites:a critical review with interfacial aspects[J].Materials, 2021, 14(12):3181.

[3]ARUN K L, UDHAYAKUMAR M, RADHIKA N A comprehensive review on various ceramic nanomaterial coatings over metallic substrates:applications, challenges and future trends[J]. Journal of Bio-and Tribo-Corrosion, 2022, 9:11.

[4]MA C Y, HE H X, XIA F F, et al. Performance of Ni–SiC composites deposited using magnetic-field-assisted electrodeposition under different magnetic-field directions[J]. Ceramics International, 2023,49(22, Part B):35907-35916.

[5]HOU T P, DUAN H T, ZHANG G D, et al. Tribocorrosion behavior and mechanism of Ni/SiC composite coating in multiple conditions[J].Materials Today Communications, 2025, 49:113966

[6]YUAN X Y, SHENG R C, DU Y Z, et al. Effect of cryogenic treatment on microstructural evolution and tribological properties of Ni–Co–Cr/SiC nanocomposite coatings[J]. Metals, 2025, 15(12):1320.

[7]WASEKAR N P, LAVAKUMAR B. Strengthening mechanisms and tribological aspects of ceramic particle reinforced electrodeposited metal matrix composites—a review[J]. Journal of Alloys and Compounds,2025, 1037:182288.

[8]黄嘉乐,陈德馨,王启伟,等.活塞表面Ni–P–SiC复合镀层的电沉积及性能表征[J].电镀与涂饰, 2021, 40(9):669-673.HUANG J L, CHEN D X, WANG Q W, et al. Electrodeposition and characterization of Ni–P–SiC composite coating on piston surface[J].Electroplating&Finishing, 2021, 40(9):669-673.

[9]胡佳.铝合金表面Ni–Co–P三元合金纳米化学复合镀层的制备与性能研究[D].重庆:重庆大学, 2015.HU J. Study on preparation and performance of Ni–Co–P ternary alloy electroless nano-composite coatings on Al alloys[D]. Chongqing:Chongqing University, 2015.

[10]冯筱珺.电沉积制备镍基复合镀层的研究[D].沈阳:沈阳大学,2018.FENG X J. Preparation of Ni based composite coatings by electrodeposition[D]. Shenyang:Shenyang University, 2018.

基本信息:

DOI:10.19289/j.1004-227x.2026.01.010

中图分类号:TQ153

引用信息:

[1]吴梦楠,唐俊榕,鲍其鹏,等.SiC颗粒预处理对Co–SiC复合电镀层硬度和耐磨性的影响[J].电镀与涂饰,2026,45(01):79-85.DOI:10.19289/j.1004-227x.2026.01.010.

基金信息:

国家商用飞机制造工程技术研究中心创新基金(COMAC-SFGS-2023-2597)

检 索 高级检索