nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.44 1-9
激光粉末定向能量沉积双相FeCoNiCrAlx熵合金涂层的组织结构及耐磨性
基金项目(Foundation):
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.06.001
摘要:

[目的]研究Al含量对双相FeCoNiCrAlx熵合金(HEAs)涂层耐磨性的影响。[方法]采用激光粉末定向能量沉积(LPDED)技术在Q235钢表面制备了FeCoNiCrAlxx=0.5、0.7、1.0)涂层。研究了Al含量对FeCoNiCrAlx金涂层微观结构、显微硬度和耐磨性的影响。[结果]随着Al含量增大,FeCoNiCrAlx层的相结构从FCC(面心立方)单相转变为FCC+BCC(体心立方)双相,最终变成单一BCC相。Al含量的增大显著提升了FeCoNiCrAlx金涂层的显微硬度和耐磨性,这主要与BCC相的高本征硬度、Al元素诱导的晶格畸变强化效应及摩擦过程氧化膜的形成有关。[结论]通过调控Al含量可有效优化FeCoNiCrAlx层的相组成,当x=0.7时可获得FCC+BCC双相结构,赋予涂层高硬度和良好的耐磨性。

Abstract:

[Objective] To study the effect of Al content on wear resistance of dual-phase FeCoNiCrAlxhigh-entropy alloy(HEA) coating. [Method] FeCoNiCrAlxx = 0.5, 0.7, 1.0) coatings were prepared on Q235 steel by laser powder directed energy deposition(LP-DED). The effect of Al content on the microstructure, microhardness, and wear resistance of FeCoNiCrAlxHEAs coatings was studied. [Result] With the increasing of Al content, the phase structure of FeCoNiCrAlxcoating evolved from single FCC(face-centered cubic) phase to FCC + BCC(body-centered cubic) dualphase, and ultimately transferred to single BCC phase. The increase in Al content significantly enhanced the microhardness and wear resistance of HEAs coatings, which was primarily attributed to the high intrinsic hardness of the BCC phase, the lattice distortion strengthening effect induced by Al, and the formation of a protective oxide film during friction. [Conclusion] The phase structure of FeCoNiCrAlxcoatings can be effectively optimized by adjusting the Al content. A dual-phase FCC+BCC structure is achieved when x is 0.7, endowing the FeCoNiCrAlxcoating with high hardness and excellent wear resistance.

参考文献

[1]CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science&Engineering:A,2004,375/376/377:213-218.

[2]YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

[3]WU Y Q,LIAW P K,LI R X,et al.Relationship between the unique microstructures and behaviors of high-entropy alloys[J].International Journal of Minerals,Metallurgy and Materials,2024,31(6):1350-1363.

[4]GEORGE E P,CURTIN W A,TASAN C C.High entropy alloys:Afocused review of mechanical properties and deformation mechanisms[J].Acta Materialia,2020,188:435-474.

[5]ALI N,ZHANG L Q,LIU D M,et al.Strengthening mechanisms in high entropy alloys:A review[J].Materials Today Communications,2022,33:104686.

[6]RIVERA-DIAZ-DEL-CASTILLO P E J,FU H W.Strengthening mechanisms in high-entropy alloys:Perspectives for alloy design[J].Journal of Materials Research,2018,33(19):2970-2982.

[7]VARVENNE C,LUQUE A,CURTIN W A.Theory of strengthening in fcc high entropy alloys[J].Acta Materialia,2016,118:164-176.

[8]YE X C,DIAO Z H,LEI H F,et al.Multi-phase FCC-based composite eutectic high entropy alloy with multi-scale microstructure[J].Materials Science&Engineering:A,2024,889:145815.

[9]BORGES P P P O,RITCHIE R O,ASTA M.Electronic descriptors for dislocation deformation behavior and intrinsic ductility in bcc highentropy alloys[J].Science Advances,2024,10(38):eadp7670.

[10]LIANG S J,MATSUNAGA S,TODA Y,et al.Microstructure evolution by thermomechanical processing and high-temperature mechanical properties of HCP-high entropy alloys (HEAs)[J].Materials Science&Engineering:A,2024,918:147414.

[11]LI D Y,LIAW P K,XIE L,et al.Advanced high-entropy alloys breaking the property limits of current materials[J].Journal of Materials Science&Technology,2024,186:219-230.

[12]XIANG D D,LIU Y S,YU T B,et al.Review on wear resistance of laser cladding high-entropy alloy coatings[J].Journal of Materials Research and Technology,2024,28:911-934.

[13]LI M F,HENEIN H,ZHOU C G,et al.Towards high-entropy alloys with high-temperature corrosion resistance and structural stability[J].Journal of Materials Science&Technology,2024,174:133-144.

[14]许桐,陈庆军,郑作栋,等.高熵合金成分设计与性能研究进展[J].材料研究与应用,2023,17(6):1039-1050.XU T,CHEN Q J,ZHENG Z D,et al.Research progress in composition design and properties of high entropy alloys[J].Materials Research and Application,2023,17(6):1039-1050.

[15]LIU T S,CHEN P,QIU F,et al.Review on laser directed energy deposited aluminum alloys[J].International Journal of Extreme Manufacturing,2024,6(2):022004.

[16]AL-AKAILAH A,NING F D.Theoretical modeling of feedstock-laser energy interaction in directed energy deposition with simultaneous wire and powder feeding[J].Manufacturing Letters,2024,41(S):1055-1063.

[17]ZHAO W,LI Z,SONG C X,et al.Al and Mo synergistic enhancement of Co Cr Fe Ni high-entropy alloy laser cladding layer[J].Journal of Materials Research and Technology,2024,28:2572-2581.

[18]LU Y P,GAO X Z,JIANG L,et al.Directly cast bulk eutectic and neareutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J].Acta Materialia,2017,124:143-150.

[19]PRAHARAJ A K,BONTHA S,BALLA V K,et al.Investigation on high-temperature tribological performance of laser directed energy deposited Inconel 625 for aerospace applications[J].Tribology International,2025,202:110388.

[20]ZAPATA A,BERNAUER C,CELBA M,et al.Studies on the use of laser directed energy deposition for the additive manufacturing of lightweight parts[J].Lasers in Manufacturing and Materials Processing,2024,11(1):109-124.

[21]CHAURASIA J K,JINOOP A N,PAUL C P,et al.Effect of deposition strategy and post processing on microstructure and mechanical properties of serviced Inconel 625 parts repaired using laser directed energy deposition[J].Optics&Laser Technology,2024,168:109831.

[22]OH W J,LEE W J,KIM M S,et al.Repairing additive-manufactured316L stainless steel using direct energy deposition[J].Optics&Laser Technology,2019,117:6-17.

[23]KIM T G,SHIM D S.Effect of laser power and powder feed rate on interfacial crack and mechanical/microstructural characterizations in repairing of 630 stainless steel using direct energy deposition[J].Materials Science&Engineering:A,2021,828:142004.

[24]KANG H S,GWAK M,KIM B J,et al.Repairing weld for directly solidified Ni-based superalloy substrates using directed energy deposition of Inconel 625[J].Materials Science&Engineering:A,2024,913:147083.

[25]LIU Z H,LIU G,MIAO X L,et al.Microstructure and wear-resistance of the Co Cr Fe Ni Mo high entropy alloy coatings by modulated arc currents using plasma transferred arc weld technique[J].Intermetallics,2024,175:108506.

[26]NI J H,WEN M,JAYALAKSHMI S,et al.Investigation on microstructure,wear and friction properties of Co Cr Fe Ni Mox highentropy alloy coatings deposited by powder plasma arc cladding[J].Materials Today Communications,2024,39:108807.

[27]ROGACHEV A S,KOVALEV D Y,VERGUNOVA Y S,et al.Hierarchical structure and remarkable properties of the Co Cr Fe Ni Cu high entropy alloy produced by fast mechanical synthesis and spark plasma sintering[J].Journal of Alloys and Compounds,2024,1002:175401.

[28]HAO X H,FAN S H,LU P,et al.Influence of Cu and Si on the microstructure and properties of Co Cr Fe Ni Cu1-xSix alloys[J].Intermetallics,2024,174:108453.

[29]ZHANG X F,YU Y,LI T Y,et al.Effect of the distribution of Cu on the tribo-corrosion mechanisms of Co Cr Fe Ni Cu0.3 high-entropy alloys[J].Tribology International,2024,193:109401.

[30]ZHANG B,CAI Y,MU W D,et al.Precipitation behaviors of the rapidly-solidified Co Cr Fe Ni Ti high-entropy alloy during aging treatment[J].Journal of Alloys and Compounds,2024,970:172502.

[31]LOGINOV P A,ZAITSEV A A,BEREZIN M A,et al.Interaction of diamond with Co Cr Fe Ni Ti HEA during in situ TEM heating:From early-stage catalytic graphitization to metal carbides[J].Surfaces and Interfaces,2025,59:105980.

[32]ZHU S G,HUI J Q,SUN X K,et al.Effect of phase transformation of Co Cr Fe Ni Al high-entropy alloy on mechanical properties of WC-Co Cr Fe Ni Al composites[J].Ceramics International,2023,49 (20):32388-32398.

[33]GENG Y S,CHEN J,TAN H,et al.Tribological performances of Co Cr Fe Ni Al high entropy alloy matrix solid-lubricating composites over a wide temperature range[J].Tribology International,2021,157:106912.

[34]HUI J Q,QIN J Y,ZHOU Y N,et al.Effect of Al content in Co Cr Fe Ni Alx HEA on mechanical properties and high temperature oxidation resistance of WC-10%Co Cr Fe Ni Alx hard alloy[J].International Journal of Refractory Metals and Hard Materials,2024,122:106712.

[35]KAO Y F,CHEN T J,CHEN S K,et al.Microstructure and mechanical property of as-cast,-homogenized,and-deformed AlxCo Cr Fe Ni(0≤x≤2) high-entropy alloys[J].Journal of Alloys and Compounds,2009,488(1):57-64.

[36]HE J Y,LIU W H,WANG H,et al.Effects of Al addition on structural evolution and tensile properties of the Fe Co Ni Cr Mn high-entropy alloy system[J].Acta Materialia,2014,62:105-113.

[37]ZHONG W H,ZHAO X L,LI S,et al.The effect of interdendritic spinodal decomposition on the corrosion resistance of Co Cr Fe Ni Al0.5high entropy alloy in supercritical CO2 environment[J].Nuclear Engineering and Design,2024,425:113324.

[38]RAO J C,DIAO H Y,OCELíK V,et al.Secondary phases in AlxCo Cr Fe Ni high-entropy alloys:an in-situ TEM heating study and thermodynamic appraisal[J].Acta Materialia,2017,131:206-220.

[39]YANG T F,XIA S Q,LIU S,et al.Effects of Al addition on microstructure and mechanical properties of AlxCo Cr Fe Ni high-entropy alloy[J].Materials Science&Engineering:A,2015,648:15-22.

[40]LI X,LI Z T,WU Z G,et al.Strengthening in Al-,Mo-or Ti-doped Co Cr Fe Ni high entropy alloys:a parallel comparison[J].Journal of Materials Science&Technology,2021,94:264-274.

[41]LU K F,WANG H Q,FAN S C,et al.Effect of Al elements on the microstructure and properties of Co Cr Ni Cu Mo Alx high-entropy alloys[J].The Journal of the Minerals,Metals&Materials Society,2022,74(11):4138-4145.

[42]HUANG Y Z,ANSARI M,ASGARI H,et al.Rapid prediction of realtime thermal characteristics,solidification parameters and microstructure in laser directed energy deposition(powder-fed additive manufacturing)[J].Journal of Materials Processing Technology,2019,274:116286.

[43]PARK G W,SHIN S,KIM J Y,et al.Analysis of solidification microstructure and cracking mechanism of a matrix high-speed steel deposited using directed-energy deposition[J].Journal of Alloys and Compounds,2022,907:164523.

[44]ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.

[45]LI C L,MA Y,HAO J M,et al.Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni,Co,Fe,Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation[J].Materials Science&Engineering:A,2018,737:286-296.

[46]HANSEN N.Hall-Petch relation and boundary strengthening[J].Scripta Materialia,2004,51(8):801-806.

[47]NAIK S N,WALLEY S M.The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals[J].Journal of Materials Science,2020,55(7):2661-2681.

基本信息:

DOI:10.19289/j.1004-227x.2025.06.001

中图分类号:TG174.4;TG665

引用信息:

[1]李震,朱建,赵书豪等.激光粉末定向能量沉积双相FeCoNiCrAl_x高熵合金涂层的组织结构及耐磨性[J].电镀与涂饰,2025,44(06):1-9.DOI:10.19289/j.1004-227x.2025.06.001.

基金信息:

检 索 高级检索