nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.44 1-9
铜覆钢在酸性土壤中的交流电腐蚀行为研究
基金项目(Foundation): 国家电网有限公司总部管理科技项目——多因素耦合下接地材料土壤腐蚀等级分布图绘制及应用研究(5500-202358119A-1-1-ZN)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.03.001
摘要:

[目的]铜覆钢作为接地金属常年深埋于土壤中,同时叠加交流干扰电流的影响,其腐蚀行为比较复杂,值得深入研究。[方法]在实验室模拟酸性土壤环境,施加不同电流密度和时间的交流干扰电流,研究不同条件下土壤的性质,以及铜覆钢的耐蚀性和接地电阻的变化。[结果]土壤在铜的交流电腐蚀过程中发生酸化,其电阻率随交流电流密度的增大呈现先降低后略微上升的趋势。铜层表面的Cu_2O腐蚀产物膜随电流密度增大而逐渐变得完整,导致其导电性能下降。当电流密度增大到使局部区域开始形成二价铜腐蚀产物时,膜层的完整性和致密性下降,其导电性能不再有显著的变化。铜覆钢经过交流电腐蚀后,其耐蚀性总体呈下降趋势,尤其是当电流密度较小,膜层覆盖不完整时最为明显。[结论]总体而言,交流电土壤腐蚀会降低铜覆钢的耐蚀性和增大接地电阻,并促进土壤的酸化。

Abstract:

[Objective] Copper-clad steel, as a grounding material buried in soil for long periods, is subjected to the interference of alternating current(AC), resulting in complex corrosion behavior that warrants further investigation.[Method] A laboratory simulation of acidic soil conditions was conducted, where AC interference of different densities and durations were applied. The properties of the soil under various conditions, as well as the corrosion resistance and grounding resistance variations of copper-clad steel were examined. [Result] During the AC corrosion of copper, the soil underwent acidification, and its resistivity was decreased initially and then gradually increased with the increasing of AC current density. The Cu_2O corrosion product film on the copper surface gradually became more complete as the current density increased, leading to a decrease in its electrical conductivity. However, when the current density was increased to the point where localized regions begin to form divalent copper corrosion products, the integrity and compactness of the corrosion product film were decreased, and its conductivity no longer showed significant changes. Overall, the corrosion resistance of copper-clad steel was decreased after AC corrosion, particularly when the current density was low and the coverage of corrosion product film was incomplete. [Conclusion] In summary, AC soil corrosion reduces the corrosion resistance of copper-clad steel, increases the grounding resistance, and accelerates the soil acidification.

参考文献

[1]朱敏,杜翠薇,李晓刚,等.铜包钢在截面暴露条件下的电偶腐蚀行为研究[J].腐蚀科学与防护技术, 2013, 25(4):265-270.ZHU M, DU C W, LI X G, et al. galvanic corrosion behavior of copperclad steel bars with unclad two-end faces[J]. Corrosion Science and Protection Technology, 2013, 25(4):265-270.

[2]贺飞,刘利梅,钟云,等.铜覆钢线材及其生产工艺[J].表面技术,2007, 36(5):78-80.HE F, LIU L M, ZHONG Y, et al. Copper-clad steel wire and its producing technology[J]. Surface Technology, 2007, 36(5):78-80.

[3]周佩朋,王森,李志忠,等.耐蚀性金属接地材料研究综述[J].电力建设, 2010(8):50-54.ZHOU P P, WANG S, LI Z Z, et al. Review of corrosion resistant metals for grounding[J]. Electric Power Construction, 2010(8):50-54.

[4]张波,蒋愉宽,杨建军,等.接地材料对大型水电站接地阻抗的影响[J].高电压技术, 2013, 39(4):964-969.ZHANG B, JIANG Y K, YANG J J, et al. Influence of the ground material on the ground impedance of large-scale hydropower plant[J].High Voltage Engineering, 2013, 39(4):964-969.

[5]安百刚,张学元,韩恩厚.沈阳大气环境下纯铜的初期腐蚀行为[J].金属学报, 2007, 3(1):77-81.AN B G, ZHANG X Y, HAN E H. Corrosion behavior of pure copper during initial exposure stage in atmosphere of Shenyang City[J]. Acta Metallurgica Sinica, 2007, 3(1):77-81.

[6]钟万里,聂铭,梁永纯,等.在不同pH值模拟酸雨溶液中纯铜的腐蚀行为[J].材料研究学报, 2015, 29(1):60-66.ZHONG W L, NIE M, LIANG Y C, et al. Corrosion behavior of pure copper in simulated acid rain of different pH[J]. Chinese Journal of Materials Research, 2015, 29(1):60-66.

[7]刘淼然,戴兴学,揭敢新,等.纯铜在湿热海洋大气环境空调外机内部初期腐蚀行为研究[J].环境技术, 2024(2):42-64.LIU M R, DAI X X, JIE G X, et al. Initial corrosion behavior of copper inside air conditioner condensers in humid and hot marine atmospheric environments[J]. Environmental Technology, 2024(2):42-64.

[8]刘琼,王庆娟,杜忠泽.铜在自然环境中的腐蚀研究[J].新技术新工艺, 2008(8):85-87.LIU Q, WANG Q J, DU Z Z. The research of copper corrosion in natural environment[J]. New Technology&New Process, 2008(8):85-87.

[9]于学勇,朱重阳,王泽华.磁场和NaCl液膜耦合作用下铜腐蚀产物的演化[J].腐蚀与防护, 2023, 44(5):23-27.YU X Y, ZHU C Y, WANG Z H. Evolution of copper corrosion products in a coupling environment of magnetic field and Na Cl electrolyte layer[J]. Corrosion&Protection, 2023, 44(5):23-27.

[10]刘静.铜管腐蚀产物对饮用水消毒中碘代三卤甲烷形成的作用规律[D].合肥:中国科学技术大学, 2019.LIU J. Effects of copper corrosion products on the formation of iodotrihalomethanes during drinking water disinfection[D]. Hefei:University of Science and Technology of China, 2019.

[11]成小林,杨琴.五种含氯铜合金腐蚀产物的拉曼光谱及扫描电镜的分析研究[J].文物保护与考古科学, 2018, 30(4):26-33.CHENG X L, YANG Q. Study of five chloride-containing corrosion products from copper and bronze artifacts using Raman spectroscopy and scanning electron microscopy[J]. Sciences of Conservation and Archaeology, 2018, 30(4):26-33.

[12]王永红,章钢娅,鹿中晖,等.铅、铝、铜土壤腐蚀随季节变化规律[J].中国腐蚀与防护学报, 2007, 27(6):326-328.WANG Y H, ZHANG G Y, LU Z H, et al. Regularity of soil corrosion of Pb, Al, Cu with climate[J]. Journal of Chinese Society for Corrosion and Protection, 2007, 27(6):326-328.

[13]闫风洁,李辛庚,姜波,等.纯铜在碱性土壤中的腐蚀行为[J].腐蚀科学与防护技术, 2018, 31(2):155-158.YAN F J, LI X G, JIANG B, et al. Corrosion behavior of pure copper in alkaline soil[J]. Corrosion Science and Protection Technology, 2018,31(2):155-158.

[14]龚晓明,葛红花,刘蕊,等.碳钢和纯铜在试验土壤中的腐蚀研究[J].上海电力学院学报, 2009, 25(6):552-556.GONG X M, GE H H, LIU R, et al. Corrosion behavior of carbon steel and copper in different soil solutions[J]. Journal of Shanghai University of Electric Power, 2009, 25(6):552-556.

[15]苏耕,丁德,李彩玉,等.交流电干扰下Q235钢与铜在不同含水量北京土壤中的短期腐蚀行为[J].腐蚀与防护, 2016, 37(8):613-617.SU G, DING D, LI C Y, et al. Short-term corrosion behavior of Q235steel and Cu with AC interference in Beijing soil with different soil moisture contents[J]. Corrosion&Protection, 2016, 37(8):613-617.

[16]冯一鸣,王芳芳,肖佳安,等.交流杂散电流对地下金属设备腐蚀的影响[J].山东化工, 2019, 48(2):119-123.FENG Y M, WANG F F, XIAO J A, et al. Effect of alternating current stray current on the corrosion of underground metal equipment[J].Shandong Chemical Industry, 2019, 48(2):119-123.

[17]刘军,杨道武,吴道新,等.交流杂散电流对变电站接地装置腐蚀电化学行为的影响[J].材料保护, 2015, 48(10):45-47.LIU J, YANG D W, WU D X, et al. Effect of AC stray current on electrochemical corrosion behavior of substation grounding device[J].Materials Protection, 2015, 48(10):45-47.

[18]杨燕,李自力,文闯.交流电对X70钢表面形态及电化学行为的影响[J].金属学报, 2013, 49(1):43-50.YANG Y, LI Z L, WEN C. Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metallurgica Sinica,2013, 49(1):43-50.

[19]何金良,张波,曾嵘,等. 1000 kV特高压变电站接地系统的设计[J].中国电机工程学报, 2009(7):7-12.HE J L, ZHANG B, ZENG R, et al. Grounding system design of 1000 kV ultra-high voltage substation[J]. Proceedings of the CSEE, 2009(7):7-12.

[20]刘冉.基于CDEGS的变电站接地网腐蚀诊断研究[D].济南:山东大学, 2014.LIU R. Diagnosis of grounding grid in substations based on CDEGS[D].Ji’nan:Shandong University, 2014.

[21]鹿中晖,章钢娅,王永红,等.铜在典型内陆盐土中的腐蚀特征[J].腐蚀科学与防护技术, 2009, 21(6):522-525.LU Z H, ZHANG G Y, WANG Y H, et al. Corrosion characteristics of Cu in typical inland salty soils[J]. Corrosion Science and Protection Technology, 2009, 21(6):522-525.

[22]王永红,鹿中晖,李英志.西部内陆盐土中铜、铝的腐蚀行为[J].中国腐蚀与防护学报, 2005, 25(5):303-306.WANG Y H, LU Z H, LI Y Z. Corrosion behavior of Cu and Al in western inland salty soil[J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(5):303-306.

[23]银耀德,张淑泉,高英.不锈钢,铜和铝合金酸性土壤腐蚀行为研究[J].腐蚀科学与防护技术, 1995, 7(3):269-271.YIN Y D, ZHANG S Q, GAO Y. Corrosion of stainless steels, H62 and LY11 alloys in acid soils[J]. Corrosion Science and Protection Technology, 1995, 7(3):269-271.

[24]王永红,鹿中晖,李英志,等.碳钢,铜,铅,铝在不同土壤中的腐蚀特性[J].现代传输, 2011(5):8-10.WANG Y H, LU Z H, LI Y Z, et al. Corrosion characteristics of carbon steel, copper, lead, and aluminum in different types of soil[J]. Modern Transmission, 2011(5):8-10.

[25]刘海云.不同涂镀层对铜接地材料在弱酸性介质中的腐蚀电化学性能影响[D].长沙:湖南大学, 2013.LIU H Y. Influence of different deposits on electrochemical corrosion performance of copper grounding material in weak acid environment[D]. Changsha:Hunan University, 2013.

[26]张燕涛,李军,房本岭,等.含水量与直流干扰电流密度对紫铜在宝鸡土壤中初期腐蚀行为的影响[J].表面技术, 2018, 47(6):131-137.ZHANG H T, LI J, FANG B L, et al. Effects of soil water content and DC current density on initial corrosion behavior of Cu in Baoji soil[J].Surface Technology, 2018, 47(6):131-137.

[27]高书君,王森,胡亚博,等.杂散电流对接地材料在陕北土壤模拟溶液中腐蚀行为影响[J].北京科技大学学报, 2013, 35(10):1327-1332.GAO S J, WANG M, HU Y B, et al. Effects of stray current on the corrosion behavior of typical grounded materials in northern Shaanxi soil simulation solution[J]. Journal of University of Science and Technology Beijing, 2013, 35(10):1327-1332.

[28]韩天一,张邦文,金苏蓉,等.江西红壤丘陵区主要森林类型土壤养分特征及评价[J].南方林业科学, 2017, 45(6):1-4, 21.HAN T Y, ZHANG B W, JIN S R, et al. Evaluation on characteristics of soil nutrient of the main forest types in hilly red soil region of Jiangxi Province[J]. South China Forestry Science,2017, 45(6):1-4, 21.

基本信息:

DOI:10.19289/j.1004-227x.2025.03.001

中图分类号:TG172.4

引用信息:

[1]田旭,裴锋,刘欣等.铜覆钢在酸性土壤中的交流电腐蚀行为研究[J].电镀与涂饰,2025,44(03):1-9.DOI:10.19289/j.1004-227x.2025.03.001.

基金信息:

国家电网有限公司总部管理科技项目——多因素耦合下接地材料土壤腐蚀等级分布图绘制及应用研究(5500-202358119A-1-1-ZN)

检 索 高级检索