nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.44 10-15
红壤中直流杂散电流对铜腐蚀行为的影响
基金项目(Foundation): 国家电网有限公司总部管理科技项目——多源复杂路径杂散电流特征参量及危害评价与治理关键技术研究(5500-202325165A-1-1-ZN)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.03.002
摘要:

[目的]研究直流杂散电流对红壤环境中纯铜腐蚀行为的影响,为电力系统接地网材料的腐蚀防护提供参考。[方法]通过实验室模拟红壤环境,在0.1~0.4 mA/cm2直流电流密度下进行24 h恒流腐蚀试验。采用电化学工作站监测纯铜的电位动态变化,结合失重法计算腐蚀速率,并运用金相显微镜、扫描电镜(SEM)和X射线衍射仪(XRD)分析腐蚀形貌及产物组成。[结果]纯铜的腐蚀速率与电流密度呈正相关,实际腐蚀速率与理论值的偏差在2.91%~10.21%之内。电位演变呈现先快速下降后缓慢上升,最后趋于动态平衡的特征,腐蚀产物以疏松多孔的Cu_2O为主,表面呈现典型的局部腐蚀形貌。[结论]直流杂散电流显著加剧红壤中纯铜的腐蚀进程,可通过电流密度有效预测腐蚀速率。本文的研究结果为接地网材料的腐蚀评估提供了依据。

Abstract:

[Objective] The corrosion behavior of pure copper in red soil under DC stray current interference needs to be studied to provide reference for corrosion protection of grounding grid materials in power systems. [Method] Laboratory simulations were conducted in red soil with DC current densities ranging from 0.1 to 0.4 m A/cm2for 24 hours. The dynamic changes in potential of copper were monitored using an electrochemical workstation, and the corrosion rate was calculated by mass loss method. The corrosion morphology and product composition were analyzed by metallographic microscopy, scanning electron microscopy(SEM), and X-ray diffraction(XRD). [Result] The corrosion rate of copper was positively correlated with current density, and the deviation of the actual corrosion rate from the theoretical value was in the range of 2.91%-10.21%. The potential evolution exhibited a characteristic of rapid decline followed by slow increase, eventually reaching a dynamic equilibrium. The corrosion products were primarily loose and porous Cu_2O, and the surface displayed typical localized corrosion morphology. [Conclusion] DC stray current significantly accelerates the corrosion process of copper in red soil. The corrosion rate can be effectively predicted based on the current density. The findings of this study provide valuable references for the corrosion assessment of grounding grid materials.

参考文献

[1]罗知林.电力工业铜消费分析与研究[J].期货与金融衍生品,2015(3):3-5.LUO Z L. Analysis and research on copper consumption in the power industry[J]. Futures and Financial Derivatives, 2015(3):3-5.

[2]赵永涛,倪锋.高压开关行业现状及发展趋势[J].电气时代,2021(11):16-23.ZHAO Y T, NI F. Current status and development trends of the high-voltage switch industry[J]. Electrical Age, 2021(11):16-23.

[3]谭建红,张胜涛,曹阿林,等.土壤环境中钢的杂散电流腐蚀研究[J].材料导报, 2011, 25(4):107-110.TAN J H, ZHANG S T, CAO A L, et al. Study on stray current corrosion of steel in soil environments[J]. Materials Review, 2011,25(4):107-110.

[4]裴锋,刘光明,刘欣,等.不同湿度的酸性红壤中Q235钢-紫铜电偶腐蚀行为研究[J].表面技术, 2017, 46(8):240-245.PEI F, LIU G M, LIU X, et al. Study on galvanic corrosion behavior of Q235 steel–copper in acidic red soil with different humidity levels[J].Surface Technology, 2017, 46(8):240-245.

[5]朱亦晨,刘光明,刘欣,等.红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J].中国腐蚀与防护学报, 2019, 39(6):550-556.ZHU Y C, LIU G M, LIU X, et al. Correlation study between field burial and accelerated corrosion tests of grounding materials in red soil areas[J]. Journal of Chinese Society for Corrosion and Protection,2019, 39(6):550-556.

[6]黄明祥.考虑土壤腐蚀的杆塔接地网设计方法[J].电力设备管理,2020(7):154-156.HUANG M X. Design method for tower grounding grid considering soil corrosion[J]. Power Equipment Management, 2020(7):154-156.

[7]刘华军.船舶杂散电流腐蚀问题及其防护[J].船电技术, 2023,43(10):61-63, 66.LIU H J. Stray current corrosion issues and protection in ships[J].Marine Electric&Electronic Technology, 2023, 43(10):61-63, 66.

[8]符传福,胡家秀,杨大宁,等.海南省变电站接地网土壤腐蚀情况调研与分析[J].腐蚀科学与防护技术, 2017, 29(1):97-102.FU C F, HU J X, YANG D N, et al. Investigation and analysis of soil corrosion in substation grounding grids in Hainan province[J].Corrosion Science and Protection Technology, 2017, 29(1):97-102.

[9]魏巍,吴欣强,柯伟,等.接地网材料腐蚀与防护研究进展[J].腐蚀科学与防护技术, 2015, 27(3):273-277.WEI W, WU X Q, KE W, et al. Research progress on corrosion and protection of grounding grid materials[J]. Corrosion Science and Protection Technology, 2015, 27(3):273-277.

[10] HUANG Z, WU G N, JIANG W, et al. Study of the influences on soil resistivity caused by HVDC mono-polar operation[C]//2008International Conference on High Voltage Engineering and Application.[S.l.:s.n], 2008:232-236.

[11]司马文霞,骆玲,袁涛,等.土壤电阻率的温度特性及其对直流接地极发热的影响[J].高电压技术, 2012, 38(5):1192-1198.SIMA W X, LUO L, YUAN T, et al. Temperature characteristics of soil resistivity and its influence on heating of DC grounding electrodes[J].High Voltage Engineering, 2012, 38(5):1192-1198.

[12]黄佳伟,胡强,胡志,等.铜合金的腐蚀与防护研究进展[J].铜业工程, 2024(1):1-21HUANG J W, HU Q, HU Z, et al. Research progress on corrosion and protection of copper alloys[J]. Copper Engineering, 2024(1):1-21.

[13]李岩.直流供电方式中杂散电流腐蚀的防护[J].山西建筑, 2018,44(17):125-126.LI Y. Protection against stray current corrosion in DC power supply systems[J]. Shanxi Architecture, 2018, 44(17):125-126.

[14]张锋,马思想,房海峰,等.接地网土壤腐蚀性评价方法综述[J].全面腐蚀控制, 2022, 36(7):23-29.ZHANG F, MA S X, FANG H F, et al. Review of soil corrosivity evaluation methods for grounding grids[J]. Total Corrosion Control,2022, 36(7):23-29.

[15]吴鑫林,胡强,曾良才,等.铜合金电化学腐蚀的研究进展[J].特种铸造及有色合金, 2023, 43(5):607-613.WU X L, HU Q, ZENG L C, et al. Research progress on electrochemical corrosion of copper alloys[J]. Special Casting&Nonferrous Alloys,2023, 43(5):607-613.

[16]王军,吴昀,张响,等.直流杂散电流对埋地管道腐蚀规律及干扰影响的研究进展[J].材料保护, 2023, 56(4):169-177, 182.WANG J, WU Y, ZHANG X, et al. Research progress on corrosion laws and interference effects of DC stray current on buried pipelines[J].Materials Protection, 2023, 56(4):169-177, 182.

基本信息:

DOI:10.19289/j.1004-227x.2025.03.002

中图分类号:TG178

引用信息:

[1]刘欣,李冠华,裴锋等.红壤中直流杂散电流对铜腐蚀行为的影响[J].电镀与涂饰,2025,44(03):10-15.DOI:10.19289/j.1004-227x.2025.03.002.

基金信息:

国家电网有限公司总部管理科技项目——多源复杂路径杂散电流特征参量及危害评价与治理关键技术研究(5500-202325165A-1-1-ZN)

检 索 高级检索