12 | 0 | 7 |
下载次数 | 被引频次 | 阅读次数 |
[目的]管道是天然气运输的主要方式,而降低管道运输过程中的沿程阻力是提高运输效率的主要技术手段。[方法]优化设计了一种以环氧树脂E-51和固化剂腰果壳油改性酚醛胺为主的无溶剂内减阻涂料,测试了涂层的性能。[结果]该涂料的涂层性能指标符合非腐蚀性气体输送管道内涂层性能规范要求,在测试参数范围内涂层的减阻率为9.1%~28.6%。以塔里木净化气轮库复线工况为例,采用该内减阻涂层的管线减阻率可达27.9%。[结论]利用二聚酸和聚丙二醇二缩水甘油醚(PPGDGE)嵌段聚合改性环氧树脂及硅烷偶联剂改性颜填料有效提高了无溶剂减阻涂料的综合性能,涂料的防腐蚀、耐磨损、黏结强度及减阻性能优异。
Abstract:[Objective] Pipeline is the main mode of natural gas transportation. Reducing the flow resistance along the pipeline during transportation is the main way to improve transportation efficiency. [Method] A solvent-free paint for internal drag reduction was formulated with epoxy resin E-51 as binder and cashew nut shell oil modified phenolic amine as curing agent, and its properties were tested. [Result] The coating met all requirements of interior coating specifications for noncorrosive gas transportation pipelines. The drag reduction rate ranged from 9.1% to 28.6% under test conditions.Field application on the Tuntai-to-Korla multiple line of Tarim natural gas purification project achieved an internal drag reduction rate of 27.9%. [Conclusion] The modification of epoxy through block copolymerization with dimeric acid and polypropylenglycol diglycidyl ether(PPGDGE), combined with silane-modified pigments and fillers, significantly enhances the comprehensive coating performance, delivering excellent corrosion/wear resistance, adhesion strength, and sustained drag reduction.
[1]ADEWUMI M A. Natural gas transportation issues[J]. Journal of Petroleum Technology, 1997, 49(2):139-142.
[2]LUO Y H, LIU Y F, ZHANG D Y. Advanced progress in nature gas pipelining applying different drag reduction/energy saving technologies:a review[J]. European Journal of Environmental and Civil Engineering, 2015, 19(8):931-949.
[3]KUT S. Internal and external coating of pipelines-1[J]. Corrosion Prevention and Control, 1977, 24(3):11-16.
[4]KUMAR S, PANDEY K M, SHARMA K K. Advances in dragreduction methods related with boundary layer control–a review[J].Materials Today:Proceedings. 2021, 45(P7):6694-6701.
[5]ASANTE B. Justification for internal coating of natural gas pipeline[C]//Proceedings of 14th International Conference on Offshore Mechanics and Arctic Engineering:Volume 5-Pipeline Technology.[S.l.]:ASME, 1995:241-248.
[6]苏欣,袁宗明,范小霞.天然气管道内涂层工艺计算[J].天然气工业, 2005, 25(10):113-116.SU X, YUAN Z M, FAN X X. Inner coating process of gas pipelines[J]. Natural Gas Industry, 2005, 25(10):113-116.
[7]张其滨,何欢,范云鹏,等. AW-01减阻耐磨涂料在大港-沧州输气管道应用效果的检测评价[J].石油工程建设, 2009, 35(1):30-32.ZHANG Q B, HE H, FAN Y P, et al. Inspection and appraisal of application results of AW-01 resistance-reducing and wear-resisting coating in Dagang-Cangzhou gas transmission pipeline[J]. Petroleum Engineering Construction, 2009, 35(1):30-32.
[8]YANG X H, ZHU W L, LIN Z, et al. Aerodynamic evaluation of an internal epoxy coating in nature gas pipeline[J]. Progress in Organic Coatings, 2005, 54(1):73-77.
[9]胡士信,陈向新.天然气管道减阻内涂技术[M].北京:化学工业出版社, 2003.HU S X, CHEN X X. Drag-reduction internal coating technology for natural gas pipelines[M]. Beijing:Chemical Industry Press, 2003.
[10]张斌,于晓颖,孟庆鹏.无溶剂环氧涂料在石化行业中的应用[J].上海涂料, 2008, 46(6):40-43.ZHANG B, YU X Y, MENG Q P. Application of solvent-free epoxy coatings in the petrochemical industry[J]. Shanghai Coating, 2008,46(6):40-43.
[11]郑安升,黄留群,杨学强,等.节能环保型无溶剂环氧减阻内涂层技术──以中俄东线天然气管道工程黑河-长岭段为例[J].天然气工业, 2020, 40(10):120-125.ZHENG A S, HUANG L Q, YANG X Q, et al. Energy-saving and environmental-friendly solvent-free epoxy drag-reduction coating technology:a case study of the Heihe-Changling section of the China–Russian eastern gas pipeline[J]. Natural Gas Industry, 2020,40(10):120-125.
[12]李鸿斌.在役输气管道减阻内涂层性能研究[D].西安:西安工业大学, 2011.LI H B. Study on the drag reduction internal coating performance for serviced gas pipeline[D]. Xi’an:Xi’an Technological University,2011.
[13]和生泰,兰巍,胡兴军.平板表面边界层流态结构的数值模拟[J].华南理工大学学报(自然科学版), 2021, 49(6):9-18.HE S T, LAN W, HU X J. Numerical simulation of flow pattern structure in boundary layer on flat plate surfaces[J]. Journal of South China University of Technology(Natural Science Edition), 2021,49(6):9-18.
[14]苑伟民.摩阻系数方程对比研究[J].天然气与石油, 2014, 32(6):21-24, 34.YUAN W M. Comparative study on friction factor equations[J].Natural Gas and Oil, 2014, 32(6):21-24, 34.
[15]郑勇刚,王明浩,毛洪光,等.四川油田输气管线摩阻系数计算公式[J].石油学报, 1999, 20(6):77-81.ZHENG Y G, WANG M H, MAO H G, et al. Friction factor calculating formulas on gas pipelines in Sichuan oil field[J]. Acta Petrolei Sinica, 1999, 20(6):77-81.
[16]朱建鲁,吕浩,王鑫,等.纯氢与掺氢天然气管道摩阻系数预测[J].天然气工业, 2024, 44(5):127-135.ZHU J L, LYU H, WANG X, et al. Prediction of friction coefficient of pure hydrogen and hydrogen-blending natural gas pipeline[J].Natural Gas Industry, 2024, 44(5):127-135.
[17]王喜安,刘雯,张世斌,等.国内外天然气管道绝对当量粗糙度的设计取值[J].油气储运, 2000, 19(10):8-10, 48.WANG X A, LIU W, ZHANG S B, et al. Foreign and domestic design and determination method on effective roughness for natural gas pipeline[J]. Oil and Gas Transportation and Storage, 2000,19(10):8-10, 48.
基本信息:
DOI:10.19289/j.1004-227x.2025.06.019
中图分类号:TE973;TQ630.7
引用信息:
[1]谭川江,毛学强,陈广明等.一种输气管道无溶剂环氧内减阻涂料的研究[J].电镀与涂饰,2025,44(06):138-144.DOI:10.19289/j.1004-227x.2025.06.019.
基金信息:
中国石油天然气股份有限公司塔里木油田分公司科技开发研究项目“净化气管道减阻耐磨涂料研究”(201023063402)