121 | 0 | 67 |
下载次数 | 被引频次 | 阅读次数 |
[目的]轮胎模具在制造过程中产生的较深划痕需要被去除,以降低表面粗糙度。[方法]采用皮秒脉冲激光器进行分步烧蚀抛光试验,即先通过激光烧蚀的方式去除模具表面的划痕,再进行激光抛光。通过设计激光烧蚀的正交试验和激光抛光的单因素试验,探求最佳工艺参数组合。[结果]当激光能量密度为0.11 J/cm2扫描速率为10 mm/s,扫描间距为0.01 mm时,可以去除材料表面深度约38μm的划痕,材料去除机理为烧蚀气化。在激光能量密度为0.39 J/cm2扫描速率为1 250 mm/s,扫描间距为0.018 mm时,通过第二步的激光抛光工艺可将材料表面粗糙度Ra由(1.404±0.132)μm降低至(99±18) nm,总降低率为92.9%,激光抛光机理为表面浅熔融。经过两步激光处理后,材料表面显微硬度由(235.9±17.3) HV提升至(316.3±6.5) HV。[结论]通过分步烧蚀抛光的激光加工技术可以获得光洁、无划痕且高硬度的35钢表面,有利于后续硫化工艺中的脱模过程。
Abstract:[Objective] The deep scratches generated during the manufacturing process of tire molds need to be removed to reduce surface roughness. [Method] A picosecond pulsed laser was employed for a step-by-step ablation and polishing test. The scratches on mold surface were removed by laser ablation and laser polishing successively. The optimal process parameters were explored by designing an orthogonal test for laser ablation and single-factor experiments for laser polishing. [Result] By laser abrasion at laser fluence 0.11 J/cm2 scanning rate 10 mm/s, and scanning spacing 0.01 mm, scratches with a depth of about 38 μm were effectively removed, and the material removal mechanism was identified as ablation vaporization. In the second step of laser polishing at laser fluence 0.39 J/cm2 scanning rate 1250 mm/s, and scanning spacing 0.018 mm, the surface roughness(Ra) of the material was reduced from(1.404 ± 0.132) μm to(99 ± 18) nm with a total reduction rate of 92.9%, and the laser polishing mechanism was characterized as shallow surface remelting. The surface microhardness was increased from(235.9 ± 17.3) HV to(316.3 ± 6.5) HV after the two-step laser treatment. [Conclusion] This step-by-step laser ablation and polishing process can produce a smooth, scratch-free, and high-hardness 35 steel surface, which facilitates the release process in subsequent vulcanization process.
[1]胡海明,张浩,张自浩.轮胎活络模具花纹块电火花加工工艺的研究应用[J].模具技术,2010(1):48-50,58.HU H M,ZHANG H,ZHANG Z H.Research and application of EDMprocess of tread block in segmented tyre mold[J].Die and Mould Technology,2010(1):48-50,58.
[2]YE Y Y,JIA B S,CHEN J,et al.Laser cleaning of the contaminations on the surface of tire mould[J].International Journal of Modern Physics B,2017,31(16/17/18/19):1744100.
[3]张伟康.模具钢激光抛光过程的数值模拟与缺陷机理分析[D].武汉:华中科技大学,2019.ZHANG W K.Numerical simulation and defect mechanism analysis of die steel laser polishing process[D].Wuhan:Huazhong University of Science and Technology,2019.
[4]UKAR E,LAMIKIZ A,DE LACALLE LNL,et al.Laser polishing of tool steel with CO2 laser and high-power diode laser[J].International Journal of Machine Tools and Manufacture,2010,50(1):115-125.
[5]MEYLAN B,CALDERON I,WASMER K.Optimization of process parameters for the laser polishing of hardened tool steel[J].Materials,2022,15(21):7746.
[6]KANG D,ZOU P,WU H,et al.Research on ultrasonic vibrationassisted laser polishing of the 304 stainless steel[J].Journal of Manufacturing Processes,2021,62:403-417.
[7]陈博文,孙树峰,王茜,等.材料表面激光抛光技术研究进展[J].中国表面工程,2021,34(6):74-89.CHEN B W,SUN S F,WANG X,et al.Research progress of laser polishing technology for material surface[J].China Surface Engineering,2021,34(6):74-89.
[8]XU J L,ZOU P,WANG W J,et al.Study on the mechanism of surface topography evolution in melting and transition regimes of laser polishing[J].Optics&Laser Technology,2021,139:106947.
[9]张明月,王岩,殷杰,等.超声振动辅助激光烧蚀铝表面形貌仿真分析[J].光电子·激光,2023,34(3):321-327.ZHANG M Y,WANG Y,YIN J,et al.Simulation of ultrasonic vibration-assisted laser ablation of aluminum surface morphology[J].Journal of Optoelectronics·Laser,2023,34(3):321-327.
[10]SHEN H,LIAO C H,ZHOU J,et al.Two-step laser based surface treatments of laser metal deposition manufactured Ti6Al4Vcomponents[J].Journal of Manufacturing Processes,2021,64:239-252.
[11]MA C P,GUAN Y C,ZHOU W.Laser polishing of additive manufactured Ti alloys[J].Optics and Lasers in Engineering,2017,93:171-177.
[12]姚建华,黄锦榜,王光浩,等.线切割高粗糙度表面的脉冲激光抛光机制研究[J].中国激光,2021,48(14):1402003.YAO J H,HUANG J B,WANG G H,et al.Pulsed laser polishing mechanism on high roughness surface cut by wire electrical discharge machining[J].Chinese Journal of Lasers,2021,48(14):1402003.
[13]MILAM D.1064 nm激光对抛光玻璃表面破坏阈值与脉冲宽度和表面粗糙度的函数关系[J].彭家驹,译.应用激光,1980(4):53-55.MILAM D.1064-nm Laser damage thresholds of polished glass surfaces as a function of pulse duration and surface roughness[J].PENG J J,transl.Applied Laser,1980(4):53-55.
[14]马玉平,张遥,魏超,等.飞秒激光抛光CVD金刚石涂层表面[J].光学精密工程,2019,27(1):164-171.MA Y P,ZHANG Y,WEI C,et al.Surface polishing of CVD diamond coating by femtosecond laser[J].Optics and Precision Engineering,2019,27(1):164-171.
[15]CHEN Y D,WU J T,SUNG H L,et al.Picosecond laser pulse polishing of ASP23 steel[J].Optics&Laser Technology,2018,107:180-185.
[16]TEMMLER A,LIU D,PREU?NER J,et al.Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11[J].Materials&Design,2020,192:108689.
[17]LIU J M.Simple technique for measurements of pulsed Gaussian-beam spot sizes[J].Optics Letters,1982,7(5):196-198.
[18]YU X H,QI D F,ZHANG Q W,et al.Fabrication of flexible transparent Ag square-shaped mesh electrode by top-flat nanosecond laser ablation[J].Optics Letters 2020,45(4):901-904.
[19]ZHANG X M,JI L F,ZHANG L T,et al.Polishing of alumina ceramic to submicrometer surface roughness by picosecond laser[J].Surface&Coatings Technology,2020,397:125962.
[20]CHEN T,WANG W J,TAO T,et al.Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J].Applied Surface Science,2020,509:145182.
[21]RAMOS-GREZ J A,BOURELL D L.Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods[J].International journal of materials and product technology,2004,21(4):297-316.
基本信息:
DOI:10.19289/j.1004-227x.2025.02.002
中图分类号:TG665
引用信息:
[1]朱胜旺,纪成龙,王成金等.模具钢表面皮秒激光分步烧蚀抛光工艺研究[J].电镀与涂饰,2025,44(02):8-14.DOI:10.19289/j.1004-227x.2025.02.002.
基金信息:
山东省科技型中小企业创新能力提升工程(2022TSGC1169)