| 135 | 0 | 7 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]研究WC–10Ni5Cr与Cr3C2–25NiCr涂层的耐磨性能。[方法]采用超音速火焰喷涂技术在ZG0Cr13Ni5Mo高强不锈钢表面制备了WC–10Ni5Cr和Cr3C2–25NiCr金属陶瓷涂层,考察了涂层的孔隙率、显微硬度及摩擦磨损行为。[结果]两种涂层均呈现致密的金属陶瓷复合结构,组织结构致密且无明显层状特征。其中WC–10Ni5Cr涂层孔隙率较低(0.69%),Cr3C2–25NiCr涂层的孔隙率略大(0.93%)。WC–10Ni5Cr涂层和Cr3C2–25NiCr涂层的显微硬度分别达到1 253.3 HV0.2和1 121.5HV0.2,前者的耐磨性显著优于后者(与基体的磨损量比分别为1∶52和1∶30)。[结论]两种涂层均以磨粒磨损为主,但WC–10Ni5Cr涂层主要表现为切削犁沟和少量硬质相脱落,而Cr3C2–25NiCr涂层呈现周期性切削和硬质相疲劳破碎特征。与Cr3C2–25NiCr涂层相比,WC–10Ni5Cr涂层具有更优异的综合性能。
Abstract:[Objective] To study the wear resistance of WC–10Ni5Cr and Cr3C2–25NiCr cermet coatings. [Method] WC–10Ni5Cr and Cr3C2–25 NiCr coatings were deposited on ZG0Cr13Ni5Mo high-strength stainless steel by high-velocity oxygen-fuel(HVOF) spraying. The porosity, microhardness, and tribological behavior of the coatings were examined. [Result] Both coatings exhibited compact cermet composite structures without distinct laminar features. The WC–10Ni5Cr coating demonstrated lower porosity(0.69%) compared with the Cr3C2–25 NiCr coating(0.93%). The microhardness reached 1 253.3 HV0.2 for WC–10Ni5Cr and 1 121.5 HV0.2 for Cr3C2–25NiCr. The wear resistance of WC–10Ni5Cr was significantly superior, with a wear loss ratio to the substrate of 1:52, versus 1:30 for Cr3C2–25 NiCr. [Conclusion] Both coatings primarily underwent abrasive wear. The WC–10Ni5Cr coating displayed plowing grooves with minimal hard phase detachment, whereas the Cr3C2–25NiCr coating exhibited periodic cutting and fatigue-induced fragmentation of hard phases. The WC–10Ni5Cr coating possesses superior comprehensive performance to the Cr3C2–25NiCr coating.
[1]赵建华,纪秀林,杨臣,等. WC–10Co–4Cr复合涂层和04Cr13Ni5Mo合金堆焊层的泥沙冲蚀行为[J].电镀与涂饰, 2016, 35(18):985-989.ZHAO J H, JI X L, YANG C, et al. Slurry erosion behavior of WC–10Co–4Cr composite coating and 04Cr13Ni5Mo alloy hardfacing layer[J]. Electroplating&Finishing, 2016, 35(18):985-989.
[2]路阳,丁明辉,王智平,等.超音速火焰喷涂研究与应用[J].材料导报, 2011, 25(10):127-130.LU Y, DING M H, WANG Z P, et al. Research status and application of HVOF[J]. Materials Reports, 2011, 25(10):127-130.
[3]赵子鹏,司洪利,李忠盛,等.等离子喷涂与超音速火焰喷涂Ni Cr–Cr3C2涂层组织与摩擦磨损性能研究[J].表面技术, 2019, 48(8):225-230.ZHAO Z P, SI H L, LI Z S, et al. Microstructure and friction and wear properties of NiCr–Cr3C2 coating by APS and HVOF[J]. Surface Technology, 2019, 48(8):225-230.
[4]章友谊.超音速火焰喷涂Cr3C2–NiCr涂层和WC–10Co–4Cr涂层的组织与性能[J].材料保护, 2020, 53(7):100-104, 136.ZHANG Y Y. Microstructure and properties of Cr3C2–NiCr coating and WC–10Co–4Cr coating prepared by supersonic flam spray[J].Materials Protection, 2020, 53(7):100-104, 136.
[5]耿少寅,王浩宇,何斌,等.不同NiCr含量的Ni Cr–Cr3C2涂层高温冲击磨损行为研究[J].摩擦学学报(中英文), 2024, 44(9):1192-1203.GENG S Y, WANG H Y, HE B, et al. Impact wear behavior of Ni Cr–Cr3C2 coatings with different NiCr contents at high temperature[J]. Tribology, 2024, 44(9):1192-1203.
[6] BAI Y, LI X B, XING L K, et al. Effect of salt spray corrosion on tribological properties of HVOF sprayed Ni Cr–Cr3C2 coating with intermediate layer[J]. Journal of Wuhan University of Technology(Materials Science), 2017, 32(2):292-298.
[7]谢兆钱,王海军,郭永明,等.超音速等离子喷涂超细WC–12Co涂层的性能[J].中国表面工程, 2010, 23(5):54-58.XIE Z Q, WANG H J, GUO Y M, et al. Performance of ultrafine WC–12Co coatings sprayed by supersonic plasma spraying[J]. China Surface Engineering, 2010, 23(5):54-58.
[8]王瑞雪,刘阳,李曙.爆炸喷涂WC–12%Co涂层的滑动磨损性能[J].中国有色金属学报, 2005, 15(11):1687-1691.WANG R X, LIU Y, LI S. Sliding wear resistance of detonation-gun sprayed WC–12%Co coatings[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(11):1687-1691.
[9] QIAO Y F, FISCHER T E, DENT A. The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC–Co coatings with very fine structures[J]. Surface and Coatings Technology, 2003, 172(1):24-41.
[10]徐仰涛,夏天东,赵文军,等.合金元素对新型Co–Al–W合金摩擦磨损性能的影响[J].稀有金属材料与工程, 2013, 42(1):75-79.XU Y T, XIA T D, ZHAO W J, et al. Effect of alloying elements on friction and wear performance of novel Co–Al–W superalloys[J].Rare Metal Materials and Engineering, 2013, 42(1):75-79.
[11]任晓燕,张国伟,徐宏,等. ZCuPb20Sn5合金耐磨性能研究[J].摩擦学学报, 2020, 40(4):467-476.REN X Y, ZHANG G W, XU H, et al. Wear resistance of ZCuPb20Sn5alloy[J]. Tribology, 2020, 40(4):467-476.
[12]王莉容,陈小明,吴燕明,等.HVAP及HVOF工艺制备WC10Co4Cr复合涂层及其性能研究[J].表面技术, 2015, 44(2):14-18.WANG L R, CHEN X M, WU Y M, et al. Properties of WC10Co4Cr composite coatings prepared using HVAP and HVOF technologies[J].Surface Technology, 2015, 44(2):14-18.
[13]孟玲玉,赵汉卿,胡明,等.激光重熔对超音速火焰喷涂Cr3C2–Ni Cr涂层组织和性能的影响[J].热加工工艺, 2022, 51(20):39-42.MENG L Y, ZHAO H Q, HU M, et al. Effects of laser remelting on microstructure and properties of supersonic flame sprayed Cr3C2–NiCr coating[J]. Hot Working Technology, 2022, 51(20):39-42.
[14]李松林,向锦涛,周伍喜,等.超音速火焰喷涂WC–10Co4Cr涂层的耐滑动磨损行为[J].中国有色金属学报, 2012, 22(5):1371-1376.LI S L, XIANG J T, ZHOU W X, et al. Sliding wear behavior of high-velocity oxy-fuel sprayed WC–10Co4Cr coatings[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(5):1371-1376.
[15] BONNY K, DE BAETS P, VLEUGELS J, et al. Dry reciprocating sliding friction and wear response of WC–Ni cemented carbides[J].Tribology Letters, 2008, 31(3):199-209.
[16]李淑涛.刘珊珊,陈海类,等.等离子弧堆焊镍基球形碳化钨涂层摩擦磨损研究[J].表面技术, 2018, 47(2):103-110.LI S T, LIU S S, CHEN H Y, et al. Wear resistance of PTAW deposited Ni-based WC composite coating[J]. Surface Technology,2018, 47(2):103-110.
基本信息:
DOI:10.19289/j.1004-227x.2025.09.011
中图分类号:TG174.4
引用信息:
[1]周夏凉,骆仁智,徐群飞,等.WC–10Ni5Cr与Cr_3C_2–25NiCr涂层微观组织及耐磨损性能的对比研究[J].电镀与涂饰,2025,44(09):87-93.DOI:10.19289/j.1004-227x.2025.09.011.
基金信息:
浙江省科技计划项目(2023C01052)