| 0 | 0 | 7 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]针对异质结(HJT)太阳电池铜栅技术中种子层湿法刻蚀诱发的微米级底切缺陷(1~3μm)对器件可靠性的制约,系统综述其形成机制与解决策略。[方法]通过剖析底切效应的电化学动力学根源(扩散传质-反应活化能-局部电场协同作用),对比主流酸性刻蚀体系(H_2O2、过硫酸盐、过硫酸氢钾复合盐)的性能瓶颈,并评述缓蚀剂对形貌调控的作用机制。[结果]底切会导致铜栅/透明导电氧化物薄膜(TCO)界面结合强度下降(接触面积缩减10%~15%,应力集中系数提高3~4倍)与接触电阻上升,致使填充因子与短路电流密度显著劣化。过硫酸氢钾复合盐体系凭借抗Cu2+催化分解能力(刻蚀速率0.7~1.0μm/min)及工艺稳定性,优于传统体系。有机缓蚀剂(如苯并三氮唑、2-巯基苯并噻唑等)可通过选择性吸附将蚀刻因子提升至4.0~7.5,有效抑制横向刻蚀。[结论]基于缓蚀剂的功能化刻蚀液设计为平衡栅线形貌精度与界面电接触特性提供了新路径。未来需突破缓蚀剂长效稳定性及界面残留控制等关键技术瓶颈,以推动铜栅异质结电池产业化进程。
Abstract:[Objective] To address the reliability constraints imposed by micron-scale undercut defects(1-3 μm) induced by wet etching of seed layers in copper-grid heterojunction(HJT) solar cells, this review systematically summarizes their formation mechanisms and mitigation strategies. [Method] By analyzing the electrochemical kinetic origins of undercut effects(synergistic interactions among diffusion mass transfer, reaction activation energy, and localized electric fields), the performance bottlenecks of mainstream acidic etching systems(including H_2O2, persulfate, potassium monopersulfate compound) were comparatively evaluated, with emphasis on the morphological regulation mechanisms of corrosion inhibitor additives. [Result] Undercuts reduce Cu-grid/transparent conducting oxide(TCO) film interfacial bonding strength(10%-15% contact area reduction, stress concentration coefficient increase by 3-4 times) and elevate contact resistance, significantly degrading fill factor and short-circuit current density. The KPMS system demonstrates superior resistance to Cu2+-catalyzed decomposition(etching rate 0.7-1.0 μm/min) and process stability compared to conventional systems. Organic corrosion inhibitors(such as benzotriazole and 2-mercaptobenzothiazole) enhance etching factors to 4.0-7.5 through selective adsorption, effectively suppressing lateral etching. [Conclusion] Functionalized etching solutions incorporating corrosion inhibitors offer a novel approach to balance grid line morphology precision and interfacial electrical properties. Future efforts must address critical technical bottlenecks such as long-term inhibitor stability and interfacial residue control to advance the industrialization of copper-grid HJT solar cells.
[1]KERR M J, SCHMIDT J, CUEVAS A, et al. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide[J]. Journal of Applied Physics, 2001, 89(7):3821-3826.
[2]ZHAO Y F, PROCEL P, HAN C, et al. Strategies for realizing highefficiency silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2023, 258:112413.
[3]LIN H, YANG M, RU X N, et al. Silicon heterojunction solar cells with up to 26.81%efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature Energy, 2023, 8(8):789-799.
[4]GREEN M A, DUNLOP E D, YOSHITA M, et al. Solar cell efficiency tables(Version 64)[J]. Progress in Photovoltaics:Research and Applications, 2024, 32(7):425-441.
[5]BENAZOUZ O, KEZZOULA F, SCHMIDT J, et al. The effect of dehydrogenation step on the nickel-induced crystallization of hydrogenated amorphous silicon[J]. Applied Physics A:Materials Science&Processing, 2023, 129(10):707.
[6]DONG Y W, CHEN L H, MAO H M, et al. High-performance lowtemperature silver paste used for silicon heterojunction solar cells through material selection and formulation optimization[J]. Journal of Electronic Materials, 2025, 54(6):4606-4617.
[7]YU J, LI J J, ZHAO Y L, et al. Copper metallization of electrodes for silicon heterojunction solar cells:process, reliability and challenges[J]. Solar Energy Materials and Solar Cells, 2021, 224:110993.
[8]YU C, GAO K, PENG C W, et al. Industrial-scale deposition of nanocrystalline silicon oxide for 26.4%-efficient silicon heterojunction solar cells with copper electrodes[J]. Nature Energy, 2023, 8(12):1375-1385.
[9]GEISSBÜHLER J, DE WOLF S, FAES A, et al. Silicon heterojunction solar cells with copper-plated grid electrodes:status and comparison with silver thick-film techniques[J]. IEEE Journal of Photovoltaics, 2014, 4(4):1055-1062.
[10]YU C, ZOU Q J, WANG Q, et al. Silicon solar cell with undoped tin oxide transparent electrode[J]. Nature Energy, 2023, 8(10):1119-1125.
[11]HATT T, MORAWIETZ T, BARTSCH J, et al. Atomic force microscopy analysis of aluminum layer properties and correlation to masking functionality in copper plating metallization for solar cells[J].Solar RRL, 2023, 7(18):2300335.
[12]WANG T Q, DU H J, XING M C, et al. Enhancing electrical and physical contacts of copper-electroplated silicon heterojunction solar cells through chemical pretreated seed layers[J]. Solar RRL, 2024, 8(5):2300938.
[13]VAN DE VOORDE M, ANDERSONS J, SAIVE R. High aspect ratio triangular front contacts for solar cells fabricated by string-printing[J].Progress in Photovoltaics:Research and Applications, 2023, 31(9):960-968.
[14]QIN X B, CHEN W Q, SUN F R, et al. Enhanced adhesion strength of copper metallization on silicon heterojunction solar cell due to improved electrochemical reduction uniformity of ITO[J]. Solar Energy Materials and Solar Cells, 2024, 277:113132.
[15]付海涛,罗永红,严惠娟,等.半加成工艺制作精细线路研究[J].电子工艺技术, 2013, 34(3):151-154.FU H T, LUO Y H, YAN H J, et al. Preliminary study of semi-additive process for fine line[J]. Electronics Process Technology, 2013, 34(3):151-154.
[16]章学春,聂航,李玉兴.铜蚀刻液蚀刻工艺的研究[J].上海化工,2023, 48(4):33-36.ZHANG X C, NIE H, LI Y X. Study on the etching process of copper etching solution[J]. Shanghai Chemical Industry, 2023, 48(4):33-36.
[17]STEWART K L, GEWIRTH A A. Mechanism of electrochemical reduction of hydrogen peroxide on copper in acidic sulfate solutions[J]. Langmuir, 2007, 23(19):9911-9918.
[18]SONG D, WU W G. Study on electrical and mechanical properties of double-end supported elastic substrate prepared by wet etching process[J]. Micromachines, 2024, 15(7):929.
[19]WANG Z, LIU H X, CHEN D M, et al. Enhancing adhesion and reducing ohmic contact through nickel-silicon alloy seed layer in electroplating Ni/Cu/Ag[J]. Materials, 2024, 17(11):2610.
[20]赵晓霞,陈立强,田宏波.硅异质结太阳能电池中化学镀锡工艺的研究[J].电镀与精饰, 2025, 47(1):9-14.ZHAO X X, CHEN L Q, TIAN H B. Research on chemical tin precipitation process in heterojunction solar cells[J]. Plating and Finishing, 2025, 47(1):9-14.
[21]URREJOLA E. Aluminum–silicon contact formation through narrow dielectric openings:application to industrial high efficiency rear passivated solar cells[D]. Konstanz:University of Konstanz, 2012.
[22]DEMAUREX B. Passivating contacts for homojunction solar cells using a-Si:H/c-Si hetero-interfaces[D]. Lausanne:Swiss Federal Institute of Technology in Lausanne, 2014.
[23]SHAHRUL A W, KHAIRY M Y, CHEOW S L, et al. Effect of contact resistive variations of screen printed Si solar cell[C]//Proceedings of the 6th IASME/WSEAS International Conference on Energy and Environment. Wisconsin:World Scientific and Engineering Academy and Society, 2011:288-291.
[24]WANG E C, MORALES-VILCHES A B, NEUBERT S, et al. A simple method with analytical model to extract heterojunction solar cell series resistance components and to extract the A-Si:H(i/p)to transparent conductive oxide contact resistivity[J]. AIP Conference Proceedings, 2019, 2147(1):040022.
[25]俞健,卞剑涛,刘毓成,等.硅异质结太阳电池接触特性及铜金属化研究[J].太阳能学报, 2019, 40(7):1959-1964.YU J, BIAN J T, LIU Y C, et al. Investigation of metal–TCO contact and copper metallization of silicon heterojunction solar cells[J]. Acta Energiae Solaris Sinica, 2019, 40(7):1959-1964.
[26]王文贤,蔡伦,陈涛,等.埋栅TCO薄膜的制备及在太阳电池上的应用[J].太阳能学报, 2021, 42(7):125-131.WANG W X, CAI L, CHEN T, et al. Fabrication of TCO stack films with embedding metal grid and applying on heterojunction solar cells[J]. Acta Energiae Solaris Sinica, 2021, 42(7):125-131.
[27]CHEN K Y, YUAN Z G, YUE X L, et al. Tantalum-doped tin oxide films as an effective diffusion barrier for copper metallization of silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2025, 289:113681.
[28]LI Z Y, XIE X Z, LUO Y H, et al. Cost-effective fabrication of a high-conductivity copper electrode for heterojunction solar cells via laser-induced selective metallization[J]. Optics Express, 2024, 32(7):12941-12949.
[29]曾祥健,袁振杰,周仲鑫,等.过氧化氢-硫酸体系铜箔微蚀工艺及其稳定剂筛选[J].电镀与涂饰, 2024, 43(10):56-63.ZENG X J, YUAN Z J, ZHOU Z X, et al. Miro-etching of copper foil in hydrogen peroxide–sulfuric acid solution and selection of corresponding stabilizer[J]. Electroplating&Finishing, 2024, 43(10):56-63.
[30]TAKAHASHI H, NOMURA S. Effects of hydrogen peroxide on chemical mechanical polishing of copper surface:exploration of reaction pathways with molecular dynamics simulation and activation energies calculation[J]. Tribology Online, 2024, 19(3):194-208.
[31]邢攸美,李潇逸,高立江,等.双氧水系铜刻蚀液各向异性刻蚀机理和方法研究进展[J].浙江化工, 2019, 50(9):11-16.XING Y M, LI X Y, GAO L J, et al. A review on the current research and mechanism of anisotropic etching in copper etchant based on hydrogen peroxide[J]. Zhejiang Chemical Industry, 2019, 50(9):11-16.
[32]杨焰,李德良,陈茜文,等.过硫酸盐/硫酸体系微蚀性能的研究[J].表面技术, 2009, 38(3):54-55, 94.YANG Y, LI D L, CHEN Q W, et al. Study on microetching performance of sodium persulfate/sulfuric acid system[J]. Surface Technology, 2009, 38(3):54-55, 94.
[33]AMIN N, SANTHIRAN S, KASSIM N M, et al. Impact analysis of metallization design and recombination losses on performance of crystalline silicon solar cells[J]. Energies, 2023, 16(18):6505.
[34]吴彩虹,李沛弘,杨万秀,等.过硫酸氢钾复合盐与过硫酸钠在PCB微蚀刻中的对比研究[J].表面技术, 2007, 36(1):78-80.WU C H, LI P H,YANG W X, et al. Comparative study on potassium monopersulfate compound and sodium persulfate in the PCB microetch field[J]. Surface Technology, 2007, 36(1):78-80.
[35]吴水清.硫酸/过氧化氢蚀刻工艺[J].电镀与环保, 1999, 19(5):27-30.WU S Q. Sulfate/hydrogen peroxide etching process[J]. Electroplating&Pollution Control, 1999, 19(5):27-30.
[36]LIU R H, HAN X Y, WANG F Y, et al. Enhancing performance in copper corrosion inhibitors through molecular structural modifications:mechanisms, design, and future pathways[J]. Journal of Molecular Liquids, 2024, 394:123750.
[37]柳剑,许涛,王翠凤,等.晶体结构对316不锈钢腐蚀影响的第一性原理研究[J].材料研究与应用, 2024, 18(5):721-726.LIU J, XU T, WANG C F, et al. Influence of crystal structure on corrosion resistance of 316 stainless steel by first-principles calculation[J]. Materials Research and Application, 2024, 18(5):721-726.
[38]PAPAPANAYIOTOU D, DELIGIANNI H, ALKIRE R C. Effect of benzotriazole on the anisotropic electrolytic etching of copper[J].Journal of The Electrochemical Society, 1998, 145(9):3016-3024.
[39]向枫,吴道新,匡尹杰,等. PCB酸性蚀刻液中不同缓蚀剂对铜蚀刻的影响及模拟计算研究[J].表面技术, 2021, 50(5):281-288.XIANG F, WU D X, KUANG Y J, et al. Influence of different corrosion inhibitors in PCB acid etching solution on copper etching and simulation calculation research[J]. Surface Technology, 2021, 50(5):281-288.
[40]钟忆青,张威风,金立奎,等.蚀刻添加剂对精细线路制作能力提升的研究[J].印制电路信息, 2018, 26(A02):56-62.ZHONG Y Q, ZHANG W F, JIN L K, et al. Improvement of fine line manufacturing by etching additive[J]. Printed Circuit Information,2018, 26(A02):56-62.
[41]付登林,陈际达,鲁蓝锶,等.电解蚀刻法制备印制电路板精细线路的工艺优化[J].电镀与涂饰, 2018, 37(23):1085-1089.FU D L, CHEN J D, LU L S, et al. Optimization of electrolytic etching process for preparing fine lines of printed circuit board[J].Electroplating&Finishing, 2018, 37(23):1085-1089.
[42]FU D L, WEN Y N, CHEN J D, et al. Study on fine lines and undercut suppression of printed circuit board prepared by electrolytic etching[J]. Circuit World, 2023, 49(1):1-12.
[43]王小丽.有机缓蚀剂协同调控精细铜线路制作的研究[D].成都:电子科技大学, 2023.WANG X L. Investigation on synergistic regulation of organic corrosion inhibitors for fabricating fine copper lines[D]. Chengdu:University of Electronic Science and Technology of China, 2023.
基本信息:
DOI:10.19289/j.1004-227x.2026.01.008
中图分类号:TG174.42;TM914.4
引用信息:
[1]周敏杰,王旭生,章金兵.铜栅异质结电池中种子层侧蚀现象的机制探究与改善策略研究进展[J].电镀与涂饰,2026,45(01):56-66.DOI:10.19289/j.1004-227x.2026.01.008.
基金信息:
宁波市自然科学基金重点项目(2022J148); 国家重点研发计划课题(2024YFB3813902)