| 148 | 0 | 11 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]为实现某型发动机执行机构活门表面氮化钛涂层的自主制备。[方法]采用多弧离子镀技术在W2ZH耐磨钢表面制备TiN涂层,对比研究俄制与自制氮化钛涂层的微观结构、物相组织、硬度、结合力等性能。[结果]俄制TiN涂层由厚度1.85μm的TiN层和0.26μm的Ti结合层组成,其物相主要是面心立方Ti N相,基本不存在择优生长取向,表面粗糙度Ra为(32.6±1.5) nm。自制TiN涂层由2.15μm厚的TiN层和0.24μm厚的Ti结合层组成,也是TiN相,但存在明显的TiN(111)择优取向,表面粗糙度Ra为(18.7±0.5) nm。自制TiN涂层的纳米硬度和弹性模量分别为(27.84±1.06) GPa和(409.89±20.39) GPa,结合力达到(66.9±3.1) N,都比俄制TiN涂层高。[结论]本TiN涂层制备工艺对于实现W2ZH耐磨钢涂层的有效自主修复具有较强的可行性。
Abstract:[Objective] In order to realize the autonomous fabrication of titanium nitride(TiN) coatings on engine actuator valve surfaces. [Method] TiN coatings were deposited on the surface of W2 ZH wear-resistant steel by multi-arc ion plating. The microstructure, phase constitution, hardness, adhesion, and adhesion of the Russian-made and home-made TiN coatings were compared. [Result] The Russian-made TiN coating consisted of a 1.85 μm-thick TiN layer and a 0.26 μm-thick Ti bonding layer, exhibiting primarily face-centered cubic Ti N phase without significant preferential orientation, with a surface roughness Ra of(32.6 ± 1.5) nm. The home-made TiN coating comprised a 2.15 μm-thick TiN layer and a 0.24 μm-thick Ti bonding layer, also composed of TiN phase but with distinct TiN(111) preferential orientation and a surface roughness Ra of(18.7 ± 0.5) nm. The home-made TiN coating showed superior performance with nanohardness of(27.84 ± 1.06) GPa, elastic modulus of(409.89 ± 20.39) GPa, and adhesion(critical load) of(66.9 ± 3.1) N, all exceeding those of the Russian-made TiN coating. [Conclusion] The developed TiN coating process shows strong feasibility for autonomous repair of W2 ZH wear-resistant steel components.
[1]中国航发西安动力控制科技有限公司.一种耐磨钢W2ZH的热处理方法:202211437883.3[P]. 2023–02–28.ZHAO D P, ZHANG X J, WANG C P, et al. Heat treatment method of wear-resistant steel W2ZH:CN115717185[P]. 2023–02–28.
[2]周永欣,吕振林,赵西城,等.高碳铬钼合金钢(Cr18Mo16V)摩擦磨损特性的研究[J].兵器材料科学与工程, 2004, 27(1):23-25.ZHOU Y X, LU Z L, ZHAO X C, et al. Study on tribological behavior of high carbon chromium molybdenum steel(Cr18Mo16V)[J].Ordnance Material Science and Engineering, 2004, 27(1):23-25.
[3]姜栋,蒋松,高晓明,等.氮化钛硬质薄膜在不同种类润滑油下的摩擦学性能研究[J].摩擦学学报, 2015, 35(5):583-591.JIANG D, JIANG S, GAO X M, et al. Tribological properties of TiN hard film lubricated with different liquid lubricants[J]. Tribology, 2015,35(5):583-591.
[4]晏鲜梅,熊惟皓.氮化钛硬质薄膜的制备方法[J].材料导报, 2006,20(增刊1):236-238.YAN X M, XIONG W H. Preparation methods of TiN hard films[J].Materials Reports, 2006, 20(Suppl.1):236-238.
[5]李学瑞,曹振,于公奇,等.氮氩流量比与基底温度对射频溅射Ti N薄膜性能的影响[J].电镀与涂饰, 2021, 40(23):1776-1780.LI X R, CAO Z, YU G Q, et al. Effects of N2/Ar flow ratio and substrate temperature on properties of RF-sputtered TiN film[J]. Electroplating&Finishing, 2021, 40(23):1776-1780.
[6]黄雪丽,谭君国,张腾飞,等.钛合金表面Ti N/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能[J].材料导报, 2021, 35(4):4139-4143.HUANG X L, TAN J G, ZHANG T F, et al. Deposition and antiwear/corrosion properties of nano-multilayer TiN/CrN films on titanium alloy[J]. Materials Reports, 2021, 35(4):4139-4143.
[7]何光宇,李应红,柴艳,等.航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J].航空学报, 2015, 36(6):1733-1743.HE G Y, LI Y H, CHAI Y, et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1733-1743.
[8]杨竹芳,何光宇,罗思海.不同热处理Ti N/Ti多层涂层冲蚀损伤特征与机理[J].表面技术, 2022, 51(10):49-57.YANG Z F, HE G Y, LUO S H. Erosion damage characteristics and mechanism of TiN/Ti multilayer coatings of different heat treatment[J].Surface Technology, 2022, 51(10):49-57.
[9]黄达,何卫锋,吕长乐,等.离子注入对TC4钛合金Ti N/Ti涂层结合力和抗砂尘冲蚀性能的影响[J].表面技术, 2020, 49(7):184-191, 198.HUANG D, HE W F, LYU C L, et al. Effects of ions implantation on adhesion strength and sand erosion resistance of TiN/Ti coatings on TC4 titanium alloy[J]. Surface Technology, 2020, 49(7):184-191, 198.
[10]谢峰.轴承表面制备Ti N薄膜工艺与性能试验研究[D].北京:中国农业机械化科学研究院, 2017.XIE F. Experimental study on preparation and performance of TiN thin film deposited on surface of bearing[D]. Beijing:Chinese Academy of Agricultural Mechanization Sciences, 2017.
[11]宋沂泽,高原,董中新,等.多弧离子镀工艺参数对氮化钛薄膜结合力的影响研究[J].热加工工艺, 2016, 45(14):133-135, 138.SONG Y Z, GAO Y, DONG Z X, et al. Effects of multi-arc ion plating process parameters on binding force of TiN film[J]. Hot Working Technology, 2016, 45(14):133-135, 138.
[12]张志强,廖斌,欧伊翔,等.磁过滤阴极真空弧技术制备厚且韧Ti N涂层[J].物理学报, 2020, 69(10):108103.ZHANG Z Q, LIAO B, OU Y X, et al. Thick yet tough TiN coatings deposited by filter cathode vacuum arc technology[J]. Acta Physica Sinica, 2020, 69(10):108103.
[13] OU Y X, CHEN H, LI Z Y, et al. Microstructure and tribological behavior of TiAlSiN coatings deposited by deep oscillation magnetron sputtering[J]. Journal of the American Ceramic Society, 2018, 101(11):5166-5176.
[14]魏永强,刘建伟,文振华,等.调制周期对Ti N/Ti Al N多层薄膜微观结构和摩擦性能的影响[J].热加工工艺, 2014, 43(18):151-155.WEI Y Q, LIU J W, WEN Z H, et al. Effect of modulation periods on microstructure and tribological properties of TiN/TiAlN multilayer coatings[J]. Hot Working Technology, 2014, 43(18):151-155.
[15]刘闯,周晖,张凯锋,等.调制比对磁控溅射Ti/TiN多层膜组织结构和结合力的影响[J].电镀与涂饰, 2019, 38(5):212-217.LIU C, ZHOU H, ZHANG K F, et al. Effect of modulation ratio on structure and adhesion strength of magnetron sputtered Ti/TiN multilayer film[J]. Electroplating&Finishing, 2019, 38(5):212-217.
基本信息:
DOI:10.19289/j.1004-227x.2025.11.008
中图分类号:V263;TG174.4
引用信息:
[1]慕娟娟,王志高,温泉,等.航空用W2ZH耐磨钢表面氮化钛涂层的制备与性能研究[J].电镀与涂饰,2025,44(11):49-54.DOI:10.19289/j.1004-227x.2025.11.008.
基金信息: