| 315 | 0 | 42 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]采用激光熔覆技术在Ti–6Al–4V钛合金表面制备了TiC增强的TiNiCoCrVSi高熵合金(HEAs)涂层,研究TiC含量对涂层组织结构与性能的影响,为钛合金表面强化技术提供技术参考。[方法]通过X射线衍射(XRD)和扫描电子显微镜(SEM)分析了TiC质量分数不同时HEAs涂层的物相组成和微观形貌。通过显微硬度计和摩擦磨损试验机分别测试了涂层的硬度和耐磨性。[结果]涂层主要由体心立方(BCC)结构、(Ni,Co)Ti2、(Ti,V)_5Si3和TiC相组成,与基体间呈良好的冶金结合。随着TiC质量分数增大,HEAs涂层的显微硬度先增大后减小,耐磨性先改善后变差。当TiC质量分数为20%时,所得HEAs-20T涂层的显微硬度最高(1 023~1 632 HV),为基体的2.8~4.5倍,且耐磨性最优,磨损体积仅为基体的8.57%。HEAs-20T涂层的主要磨损机制为粘着磨损,基体则以磨粒磨损和粘着磨损为主。[结论]激光熔覆技术制备的HEAs-20T涂层具有优异的综合性能,是一种极具潜力的钛合金表面强化材料。
Abstract:[Objective] Ti C-reinforced TiNiCoCrVSi high-entropy alloy(HEAs) coatings was prepared on Ti–6 Al–4V titanium alloy surface by laser cladding. The effect of mass fraction of TiC on the microstructure and properties of the coatings was studied to provide a technical reference for surface strengthening of titanium alloys. [Method] The phase composition and micromorphology of HEAs coatings with different mass fraction of TiC were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The microhardness and wear resistance of the coatings were evaluated using a microhardness tester and a wear testing machine, respectively. [Result] The coatings mainly consisted of a body-centered cubic(BCC) structure,(Ni,Co)Ti2,(Ti,V)_5Si3, and TiC phases, exhibiting good metallurgical bonding with the substrate. As the TiC mass fraction increased, the microhardness of HEAs coatings increased initially and then decreased, while the wear resistance improved firstly and then deteriorated. The HEAs-20T coating containing 20% TiC had the highest microhardness(1 023-1 632 HV), approximately 2.8-4.5 times that of the substrate, along with the optimal wear resistance, showing a wear volume only 8.57% of that of the substrate. The dominant wear mechanism of the HEAs-20T coating was adhesive wear, whereas the substrate experienced a combination of abrasive wear and adhesive wear. [Conclusion] The HEAs-20T coating prepared by laser cladding exhibits excellent comprehensive properties, demonstrating great potential as a surface strengthening material for titanium alloys.
[1]罗雷,段西明,杨西荣,等.生物医用超细晶钛及钛合金的研究进展[J].中国材料进展, 2022, 41(4):314-320.LUO L, DUAN X M, YANG X R, et al. Research progress of biomedical ultrafine-grain titanium and titanium alloy[J]. Materials China, 2022, 41(4):314-320.
[2]王鹏成,潘永智,李红霞,等.离子注入对钛合金表面摩擦磨损性能的研究进展[J].工具技术, 2020, 54(11):3-7.WANG P C, PAN Y Z, LI H X, et al. Research progress of tribological properties on titanium alloy surface by ion implantation[J]. Tool Engineering, 2020, 54(11):3-7.
[3]余成君.钛合金摩擦磨损及改善技术的研究进展[J].现代盐化工,2020, 47(3):42-45.YU C J. Research progress on friction and wear of titanium alloy and improvement technology[J]. Modern Salt and Chemical Industry, 2020,47(3):42-45.
[4]李兆峰,张新杰,蒋鹏,等.钛合金摩擦磨损特性及表面改性技术研究进展[J].表面工程与再制造, 2022, 22(1):21-29.LI Z F, ZHANG X J, JIANG P, et al. Research progress on friction and wear performance and surface modification technologies of titanium alloys[J]. Surface Engineering&Remanufacturing, 2022, 22(1):21-29.
[5] CAI Z B, WANG Y D, CUI X F, et al. Design and microstructure characterization of FeCoNiAlCu high-entropy alloy coating by plasma cladding:in comparison with thermodynamic calculation[J]. Surface&Coatings Technology, 2017, 330:163-169.
[6] GE W J, WU B, WANG S R, et al. Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering[J]. Advanced Powder Technology, 2017, 28(10):2556-2563.
[7]蒲科锦,王廷军,孟东,等.多主元高熵合金材料的研究进展[J].新技术新工艺, 2022(2):10-14.PU K J, WANG T J, MENG D, et al. Research progress of high-entropy alloys materials with multi-principal element[J]. New Technology&New Process, 2022(2):10-14.
[8]笪强,马国政,康嘉杰,等.耐磨耐蚀高熵合金涂层性能研究进展[J].材料导报, 2024, 38(24):23110145.DA Q, MA G Z, KANG J J, et al. Research progress on properties of wear and corrosion-resistant high entropy alloy coatings[J]. Materials Reports, 2024, 38(24):23110145.
[9]李天昕,卢一平,曹志强,等.难熔高熵合金在反应堆结构材料领域的机遇与挑战[J].金属学报, 2021, 57(1):42-54.LI T X, LU Y P, CAO Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metallurgica Sinica, 2021, 57(1):42-54.
[10]卢煜,李春燕,田霖,等.高熵合金的性能研究进展[J].稀有金属,2022, 46(10):1352-1364.LU Y, LI C Y, TIAN L, et al. Research progress on properties of high-entropy alloys[J]. Chinese Journal of Rare Metals, 2022, 46(10):1352-1364.
[11]马明星,王志新,梁存,等. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J].材料工程, 2019, 47(7):106-111.MA M X, WANG Z X, LIANG C, et al. Effect of Ce O2 doping on microstructure, friction and wear properties of AlCoCrCuFe high-entropy alloys[J]. Journal of Materials Engineering, 2019, 47(7):106-111.
[12]杨恒喆,张森铭,孙凤儿,等.碳元素对Al2CoCrCuFeNi高熵合金组织和性能的影响[J].粉末冶金工业, 2022, 32(2):34-39.YANG H Z, ZHANG S M, SUN F E, et al. Effect of carbon on microstructure and properties of Al2Co CrCuFeNi high entropy alloy[J].Powder Metallurgy Industry, 2022, 32(2):34-39.
[13] DENG N, WANG J, WANG J X, et al. Microstructure and properties of AlCoCrCuFeNi high-entropy alloy solidified under high magnetic field[J]. Materials Letters, 2021, 285:129182.
[14]宋若康,张琳. Cr MnFeVCu系高熵合金的微观组织和性能[J].稀有金属材料与工程, 2021, 50(10):3707-3713.SONG R K, ZHANG L. Microstructure and mechanical properties of CrMnFeVCu high entropy alloys[J]. Rare Metal Materials and Engineering, 2021, 50(10):3707-3713.
[15] SOARE V, BURADA M, CONSTANTIN I, et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films[J]. Applied Surface Science, 2015, 358:533-539.
[16]石彦彦.磁控溅射FeCrCoNiMn高熵合金薄膜及其耐腐蚀性能研究[D].兰州:兰州理工大学, 2016.SHI Y Y. The deposition and the corrosion performance of FeCrCoNiMnCo high entropy alloy thin films[D]. Lanzhou:Lanzhou University of Technology, 2016.
[17]谢红波,刘贵仲,郭景杰,等. AlFeCrCoCu多组元高熵合金组织与性能的研究[J].稀有金属与硬质合金, 2015, 43(3):33-39.XIE H B, LIU G Z, GUO J J, et al. Research on microstructure and properties of AlFeCrCoCu high-entropy alloy[J]. Rare Metals and Cemented Carbides, 2015, 43(3):33-39.
[18]邱星武,吴明军,戚燕,等.激光熔覆Al2CrFeCoCuNix Ti高熵合金涂层的组织及耐蚀性能[J].红外与激光工程, 2018, 47(7):0706008.QIU X W, WU M J, QI Y, et al. Microstructure and corrosion resistance of Al2CrFeCoCuNix Ti high entropy alloy coatings prepared by laser cladding[J]. Infrared and Laser Engineering, 2018, 47(7):0706008.
[19]尚晓娟,刘其斌,郭亚雄,等. Nb对激光熔覆MoFeCrTiWAlNbx高熔点高熵合金组织与性能的影响[J].功能材料, 2017, 48(12):12214-12220.SHANG X J, LIU Q B, GUO Y X, et al. Effect of Nb on microstructure and properties of laser cladding MoFeCrTiWAlNbx high-melting-point high-entropy alloy[J]. Journal of Functional Materials, 2017, 48(12):12214-12220.
[20]吴晨.激光熔覆制备AlFeCoCr涂层的微观结构、磨损与腐蚀性能[D].常州:常州大学, 2021.WU C. Microstructure, wear and corrosion properties of laser cladded AlFeCoCr coatings[D]. Changzhou:Changzhou University, 2021.
[21]李志远.激光熔覆制备CoCrFeNiTixAl1-x/SiC0.1高熵合金涂层的组织及性能研究[D].西安:长安大学, 2021.LI Z Y. Study on microstructure and properties of CoCrFeNiTix Aly/SiC high entropy alloy coating prepared by laser cladding[D]. Xi’an:Chang’an University, 2021.
[22]张华健,孙中刚,李峰,等.激光熔覆铁基复合涂层组织与性能影响[J].表面技术, 2018, 47(12):127-133.ZHANG H J, SUN Z G, LI F, et al. Effect of microstructure and properties of laser cladding iron-based composite coatings[J]. Surface Technology, 2018, 47(12):127-133.
[23]王刚,刘亚萍,吕云卓,等.工艺参数对激光快速成型Fe基合金组织与晶化行为的影响[J].激光与光电子学进展, 2018, 55(4):041403.WANG G, LIU Y P, LU Y Z, et al. Influence of process parameter on microstructure and crystallization behavior of Fe-based alloy processed by laser rapid forming[J]. Laser&Optoelectronics Progress, 2018, 55(4):041403.
[24] CAI Z B, CUI X F, LIU Z, et al. Microstructure and wear resistance of laser cladded Ni–Cr–Co–Ti–V high-entropy alloy coating after laser remelting processing[J]. Optics&Laser Technology, 2018, 99:276-281.
[25] ENOMOTO M. The Si–Ti–V system(silicon–titanium–vanadium)[J].Journal of Phase Equilibria, 1992, 13(2):201-205.
[26]周勇,康凯祥,董会,等. Ti C增强高熵合金复合涂层的显微组织与摩擦磨损性能[J].材料热处理学报, 2022, 43(3):128-133.ZHOU Y, KANG K X, DONG H, et al. Microstructure and friction and wear properties of TiC reinforced high-entropy alloy composite coating[J]. Transactions of Materials and Heat Treatment, 2022, 43(3):128-133.
基本信息:
DOI:10.19289/j.1004-227x.2025.11.009
中图分类号:TG174.4;TG665
引用信息:
[1]张红霞,蔡志龙,李永斌,等.激光熔覆TiC增强的TiNiCoCrVSi高熵合金涂层组织结构与性能[J].电镀与涂饰,2025,44(11):55-62.DOI:10.19289/j.1004-227x.2025.11.009.
基金信息:
山东省自然科学基金(ZR2020KE052); 东营市科学发展基金(2023kyqd026); 山东石油化工学院大学生创新创业训练计划项目(DC2024097)