| 182 | 0 | 52 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]为了提高5083铝合金的耐蚀性,在其表面制备了超疏水抗菌复合涂层。[方法]首先对铝合金进行微弧氧化处理,然后将加了硅烷改性TiO2和ZnO纳米粒子的环氧涂料喷涂在其表面,制得厚度约400μm的复合涂层。采用扫描电镜(SEM)及X射线衍射仪(XRD)考察了微弧氧化膜及复合涂层的表面形貌和物相组成,通过动电位极化曲线测试、接触角测量和平板涂布计数法对涂层的耐蚀性、疏水性和抗菌性进行考察。[结果]当纳米TiO2和ZnO的质量比为1∶1时,复合涂层的耐蚀性最好,水接触角达到164.12°,滑动角低至2.10°,对大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌的抗菌率分别为99.32%、99.85%和91.17%。[结论]通过微弧氧化与纳米复合涂层技术相结合,可明显提高5083铝合金的耐蚀性、疏水性和抗菌性。
Abstract:[Objective] To improve the corrosion resistance of 5083 aluminum alloy, a superhydrophobic and antibacterial composite coating was fabricated on its surface. [Method] The aluminum alloy was treated by micro-arc oxidation initially, and then sprayed with an epoxy paint containing silane-modified TiO2 and ZnO nanoparticles, forming a ca.400 μm-thick composite coating. The surface morphology and phase constitution of the micro-arc oxidation film and composite coating were examined using scanning electron microscope(SEM) and X-ray diffractometer(XRD), while the corrosion resistance, hydrophobicity, and antibacterial performance of the coating were tested by potentiodynamic polarization measurement, contact angle measurement, and plate count method. [Result] The composite coating prepared at a TiO_2-to-ZnO mass ratio of 1:1 showed the optimal corrosion resistance with a water contact angle up to 164.12° and a sliding angle as low as 2.10°. The antibacterial rates of the composite coating against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were 99.32%, 99.85%, and 91.17%, respectively. [Conclusion] The combination of micro-arc oxidation and nanocomposite coating technologies greatly enhances the corrosion resistance, hydrophobicity, and antibacterial performance of 5083 aluminum alloy.
[1] HUANG B, LIU Y Z, ZHOU Z G, et al. Selective laser melting of7075 aluminum alloy inoculated by Al–Ti–B:Grain refinement and superior mechanical properties[J]. Vacuum, 2022, 200:111030.
[2]喻岚,袁景追,喻天健,等. 7075铝合金表面HEDP阳极氧化膜的微观结构及耐蚀、耐磨性能[J].电镀与涂饰, 2024, 43(11):71-79.YU L, YUAN J Z, YU T J, et al. Microstructure and corrosion/wear resistance of anodic oxide film prepared on 7075 aluminum alloy in HEDP electrolyte[J]. Electroplating&Finishing, 2024, 43(11):71-79.
[3] QI X, LI J, HE Y F, et al. Study on the wear resistance and corrosion behaviour of self-sealed MAO/ZrO2 coatings prepared on 7075aluminium alloy[J]. Journal of Alloys and Compounds, 2023, 969:172436.
[4] YANG Z H, LU K C, HAO C G, et al. Topography, antisoiling and anticorrosion behavior of the superamphiphobic composite coating on5083 aluminum alloy based on microarc oxidation[J]. Surface Topography:Metrology and Properties, 2025, 13(1):015024.
[5] OMIYALE B O, OLUGBADE T O, ABIOYE T E, et al. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications:a review[J]. Materials Science and Technology, 2022, 38(7):391-408.
[6] ZHANG K, YU S R. Preparation of wear and corrosion resistant micro-arc oxidation coating on 7N01 aluminum alloy[J]. Surface and Coatings Technology, 2020, 388:125453.
[7] LV X S, QIN Y, LIANG H, et al. A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties[J]. Applied Surface Science, 2021, 562:150192.
[8] WANG L W, LIANG J M, LI H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl-[J]. Corrosion Science, 2021, 178:109076.
[9] JIA Z H, HUANG H L, WANG X L, et al. Hafnium in aluminum alloys:a review[J]. Acta Metallurgica Sinica(English Letters), 2016,29(2):105-119.
[10] SI W, GUO Z G. Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications:a review[J].Advances in Colloid and Interface Science, 2022, 310:102797.
[11] YUE D Z, JIANG X Z, YU H Y, et al. In-situ fabricated hierarchical nanostructure on titanium alloy as highly stable and durable super-lubricated surface for anti-biofouling in marine engineering[J].Chemical Engineering Journal, 2023, 463:142389.
[12] ZHANG B B, YANG G, XU W C, et al. Hybrid superamphiphobic anti-corrosion coating with integrated functionalities of liquid repellency, self-cleaning, and anti-icing[J]. Journal of Materials Science&Technology, 2024, 184:256-268.
[13] KONG R X, REN J L, MO M, et al. Multifunctional antifogging,self-cleaning, antibacterial, and self-healing coatings based on polyelectrolyte complexes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 656:130484.
[14]朱枝胜,李康,祝闻,等. 6061铝合金黄色微弧氧化膜层制备工艺优化及性能表征[J].电镀与涂饰, 2024, 43(6):102-109.ZHU Z S, LI K, ZHU W, et al. Optimization of the process for preparing yellow micro-arc oxidation film on 6061 aluminum alloy and its characterization[J]. Electroplating&Finishing, 2024, 43(6):102-109.
[15] QIN Y F, ZHENG G F, ZHU L Y, et al. Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying[J]. Surface and Coatings Technology, 2018, 342:137-145.
[16] ANWAR A, AKBAR S, KAZMI M, et al. Novel synthesis and antimicrobial studies of nanoscale titania particles[J]. Ceramics International, 2018, 44(17):21170-21175.
[17] WANG B K, LUO R H, YANG Z H, et al. Synthesis and characterization of modified iron oxide hydrophobic corrosionresistant pigment for aluminum alloy coating[J]. Surface Topography:Metrology and Properties, 2024, 12(2):025005.
[18]柯婷,王继虎,温太晟,等.光催化型金属氧化物抗菌剂的研究进展[J].电镀与涂饰, 2023, 42(22):40-47.KE T, WANG J H, WEN T C, et al. Advances in photocatalytic metal oxides as antimicrobial agents[J]. Electroplating&Finishing, 2023,42(22):40-47.
[19] SHI H, ZHUANG Q X, ZHENG A N, et al. Permanent antimicrobial polymethyl methacrylate prepared by chemical bonding with poly(hexamethylene guanidine hydrochloride)[J]. Polymers for Advanced Technologies, 2021, 32(12):4678-4689.
[20]张孜文,杨建军,吴庆云,等. γ-缩水甘油醚氧丙基三甲氧基硅烷/聚六亚甲基胍盐酸盐在织物抗菌整理中的应用[J].高分子材料科学与工程, 2021, 37(12):45-50.ZHANG Z W, YANG J J, WU Q Y, et al. Application of γ-glycidoxypropyltrimethoxysilane/polyhexamethylene hydrazine hydrochloride in antibacterial finishing of cottons[J]. Polymer Materials Science and Engineering, 2021, 37(12):45-50.
[21]宋佳,徐晶璐,王继虎,等. PHMG-KH560@TiO2抗菌剂的制备及在涂料中的应用[J].电镀与涂饰, 2024, 43(9):108-116.SONG J, XU J L, WANG J H, et al. Preparation of antibacterial agent PHMG-KH560@Ti O2 and its application in paint[J]. Electroplating&Finishing, 2024, 43(9):108-116.
[22] ZHANG A L, LI Y X. Thermal conductivity of aluminum alloys—a review[J]. Materials, 2023, 16(8):2972.
[23] CHEN J Y, XIAO X Y, WANG Y, et al. Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation[J]. Applied Surface Science, 2019, 467:1000-1010.
基本信息:
DOI:10.19289/j.1004-227x.2025.09.004
中图分类号:TG174.4
引用信息:
[1]陆科呈,杨展华,杨鸿驰,等.微弧氧化5083铝合金表面超疏水抗菌纳米复合涂层的制备及性能表征[J].电镀与涂饰,2025,44(09):33-41.DOI:10.19289/j.1004-227x.2025.09.004.
基金信息:
广西重点研发计划(桂科AB23026059); 广西科学院改革发展专项(2024YGFZ505-905、2024YGFZ504-1010); 广西科技重大专项(桂科AA24263065); 中央引导地方科技发展资金项目(桂科ZY24212007); 南宁市科技重大专项(20241023)