169 | 1 | 67 |
下载次数 | 被引频次 | 阅读次数 |
[目的]为科学评估热浸镀锌螺栓在不同大气环境下的服役寿命差异及其对生态环境的影响,以及建立全生命周期环保性能评价体系,本研究通过分析镀锌螺栓在典型环境下的腐蚀行为,结合环境属性量化其生产环节的环境影响指标,为电力系统选材优化与维护策略提供理论依据。[方法]在三亚(SY)、武汉(WH)、潍坊(WF)和青岛(QD)4个典型大气环境中对镀锌螺栓进行了为期12月和24月的暴露试验,通过形貌观察、腐蚀速率计算、拉曼光谱分析及电化学测试分析镀锌螺栓在4种不同典型大气环境下的腐蚀行为。并基于ISO 14042:2000标准运用IMPACT2002+方法构建环保性能评价指标体系。[结果]镀锌螺栓在不同典型环境中均具有较好的耐蚀性,主要以均匀腐蚀为主,并伴随局部腐蚀坑,最高腐蚀速率为18.22μm/a,腐蚀坑深度集中于7~11μm。腐蚀速率排序呈现阶段性差异,12月时为WF>WH>SY>QD,24月时转为WF>WH>QD>SY。拉曼分析表明,镀锌螺栓在QD地区暴露24月后的腐蚀产物以低保护性Zn_5Cl2OH)8H_2O为主,而其余地区形成致密的Zn5CO32OH)6电化学测试显示,12个月时QD地区样品极化电阻最高,腐蚀电流密度最低;24个月时SY地区样品的耐蚀性最优,WF地区样品始终表现最差。[结论]镀锌螺栓腐蚀速率的差异与表面腐蚀产物膜的保护效能密切相关,低致密性产物对基体的保护性较低,因而腐蚀速率增大。基于生产过程环境属性分析,确立化学需氧量、酸化潜值、富营养化潜值、固体废弃物、可吸入无机物及全球气候变暖潜值为热浸镀锌环保性能核心评价指标,实现腐蚀防护效能与环境影响的协同评估。
Abstract:[Objective]To scientifically evaluate the service life differences of hot-dip galvanized bolts in different atmospheric environments and their impact on ecological environment,as well as to establish a life-cycle environmental performance evaluation system,the corrosion behavior of galvanized bolts in typical environments were studied,the environmental impact indicators during production process were also quantified based on environmental attributes,providing theoretical support for material optimization and maintenance strategies in power systems.[Method]Hot-dip galvanized bolts were exposed in four typical atmospheric environments i.e.Sanya (coded as SY),Wuhan (coded as WH),Weifang (coded as WF),and Qingdao (coded as QD) for 12 and 24 months.The corrosion behavior of galvanized bolts in the four sites were analyzed through morphology observation,corrosion rate calculation,Raman spectroscopy,and electrochemical testing.The IMPACT2002+method was employed to construct an environmental performance evaluation index system based on ISO 14042:2000.[Result]The galvanized bolts exhibited good corrosion resistance in all tested environments,with uniform corrosion as the dominant mode,accompanied by localized pitting corrosion.The maximum corrosion rate was 18.22μm/a,and the pit depths were concentrated between 7 and 11μm.The corrosion rate ranking in different sites showed time-dependent differences:WF>WH>SY>QD at 12 months,and WF>WH>QD>SY at 24 months.Raman analysis revealed that in QD,the corrosion products after 24 months of exposure were primarily low-protective Zn_5Cl2OH)8H_2O,while specimens in other sites formed dense Zn5CO32OH)6Electrochemical tests indicated that at 12 months,the specimens in QD exhibited the highest polarization resistance and the lowest corrosion current density;at 24 months,SY specimens showed the best corrosion resistance,while WF specimens consistently performed the worst.[Conclusion]The differences in corrosion rates of galvanized bolts are closely related to the protective efficiency of the surface corrosion product films.Low-density corrosion products provide inadequate protection for the substrate,leading to higher corrosion rates.Based on the environmental attributes of the production process,key environmental performance evaluation indicators for hot-dip galvanizing i.e.chemical oxygen demand(COD),acidification potential (AP),eutrophication potential (EP),solid waste (SW),respirable inorganics (RI),and global warming potential (GWP) were established.The results of this paper enables a synergistic assessment of corrosion protection performance and environmental impact.
[1]王凌旭,何锦航,孙博,等.输变电用Q345HN耐候钢铁塔异材搭接螺栓的电偶腐蚀行为[J].腐蚀与防护,2022,43(10):94-98,109.WANG L X,HE J H,SUN B,et al.Galvanic corrosion behavior of different bond bolts in Q345HN weathering steel tower for power transmission and transformation[J].Corrosion&Protection.,2022,43(10):94-98,109.
[2]林德源,陈云翔,庄严,等.运用大气腐蚀监测技术研究福建地区镀锌钢的大气腐蚀行为[J].电镀与涂饰,2024,43(5):121-128.LIN D Y,CHEN Y X,ZHUANG Y,et al.Study on atmospheric corrosion behavior of zinc-coated steel by atmospheric corrosion monitoring technology[J].Electroplating&finishing,2024,45 (5):121-128.
[3]原徐杰,张俊喜,季献武,等.电力输电杆塔用镀锌钢在污染环境中的腐蚀行为研究[J].腐蚀科学与防护技术,2013,25(1):13-18.YUAN X J,ZHANG J X,JI X W,et al.Corrosion behavior of galvanized steel for power transmission tower in polluted environment[J].Corrosion Science and Protection Technology,2013,25(1):13-18.
[4]陈云,强春媚,王国刚,等.输电铁塔的腐蚀与防护[J].电力建设,2010,31(8):55-58.CHEN Y,QIANG C M,WANG G M,et al.Corrosion and protection of transmission towers[J].Electric Power Construction,2010,31(8):55-58.
[5]刘欣,裴锋,田旭,等.Cl-和气体环境对锌包钢腐蚀行为的影响[J].中国科技论文,2019,14(12):1317-1322.LIU X,PEI F,TIAN X,et al.Influence of chloride ion and gas atmosphere on corrosion behavior of zinc-clad steel[J].China Sciencepaper,2019,14(12):1317-1322.
[6]林学亮,王友彬,辛延琛,等.热浸镀锌层界面的微区电化学腐蚀行为[J].表面技术,2022,51(9):217-225.LIN X L,WANG Y B,XIN Y C,et al.Localized electrochemical corrosion behavior of the interface of hot-dip galvanized coating[J].Surface Technology,2022,51(9):217-225.
[7]冯利军,董鹏飞,程正冲,等.镀锌板在不同加速腐蚀环境下的腐蚀行为研究[J].表面技术,2017,46(8):246-253.FENG L J,DONG P F,CHENG Z C,et al.Corrosion behavior of galvanized sheet in different accelerated corrosion environment[J].Surf.Technol.,2017,46(8):246-253.
[8]田旭,李顺新,裴锋,等.Q235钢和镀锌钢在南昌大气环境中的腐蚀行为[J].热加工工艺,2022,51(6):32-35,38.TIAN X,LI S X,PEI F,et al.Corrosion behavior of Q235 steel and galvanized steel in Nanchang atmospheric environment[J].Hot Work.Technol.,2022,51(6):32-35,38.
[9]边美华,何雨茵,彭家宁,等.镀锌钢耐腐蚀性能在线快速检测装置及其应用[J].电镀与涂饰,2024,43(7):85-91.BIAN M H,HE Y Y,PENG J N,et al.Application of an on-line rapid corrosion resistance test device for zinc-coated steel[J].Electroplating&Finishing,2024,43(7):85-91.
[10]李俊松,周梦鑫,王震宇.新型接地材料在汕头土壤浸出液中的腐蚀电化学行为[J].电镀与涂饰,2024,43(6):134-139.LI J S,ZHOU M X,WANG Z Y.Corrosion electrochemical behavior of novel grounding material in soil leaching liquor in Shantou[J].Electroplating&Finishing,2024,43(6):134-139.
[11]张振岳,岳增武,姜波,等.热浸镀锌产业在钢结构腐蚀防护中的应用现状[J].材料保护,2019,52(12):135-138.ZHANG Z Y,YUE Z W,JIANG B,et al.Application status of hot dip galvanizing in corrosion protection of steel structure[J].Materials Protection,2019,52(12):135-138.
[12]周经中,王晓芳,陈云,等.输电杆塔用热镀锌钢在模拟东南沿海大气环境中的加速腐蚀试验方法研究[J].材料保护,2021,54(11):57-62.ZHOU J Z,WANG X F,CHEN Y,et al.Study on accelerated corrosion test method of hot-dip galvanized steel for transmission tower in simulated southeast coastal atmospheric environment[J].Materials Protection,2021,54(11):57-62.
[13]柴滨.沿海工业区域输变电电塔钢构件的腐蚀行为研究[J].热喷涂技术,2023,15(1):61-65,28.CHAI B.Study on corrosion behavior of steel members of transmission and transformation towers in coastal industrial areas[J].Thermal Spray Technology,2023,15(1):61-65,28.
[14]杨海洋,丁国清,黄桂桥,等.镀锌钢在不同大气环境中的腐蚀行为[J].腐蚀与防护,2017,38(5):369-371,376.YANG H Y,DING G Q,HUANG G Q,et al.Corrosion behavior of galvanized steels in different atmospheric environments[J].Corrosion&Protection,2017,38(5):369-371,376.
[15]李波,何锦航,余思伍,等.镀锌钢在模拟沿海-工业大气中的腐蚀行为[J].材料保护,2022,55(7):128-136.LI B,HE J H,YU S W,et al.Corrosion behavior of galvanized steel in simulated coastal-industrial atmosphere[J].Materials Protection,2022,55(7):128-136.
[16]THIERRY D,PERSSON D,LEBOZEC N.Atmospheric corrosion of zinc and zinc alloyed coated steel[J].Encyclopedia of Interfacial Chemistry:Surface Science and Electrochemistry,2018:55-78.
[17]ONYE J,FRANKEL G S.Effects of Na Cl,SO2,NH3,O3,and ultraviolet light on atmospheric corrosion of Zn[J].Materials and Corrosion,2019,71(1):9-20.
[18]贾慧淑.镀锌钢板耐腐蚀性能影响因素分析[J].河北冶金,2018 (2):21-25.JIA H S.Influencing factors analysis of corrosion resistance of galvanized steel sheet[J].Hebei Metallurgy,2018(2):21-25.
[19]罗志俊,王晓晨,孙齐松,等.模拟加速腐蚀条件下耐候螺栓的腐蚀行为研究[C]//第十二届中国钢铁年会论文集:6.先进钢铁材料,北京:冶金工业出版社,2019:309-315.LUO Z J,WANG X C,SUN Q S,et al.Study on corrosion behavior of weathering bolts under simulated accelerated corrosion[C]//Proceedings of the 12th CSM Steel Congress,Beijing:Metallurgical Industry Press,2019:309-315.
[20]DANIEL E F,WANG C G,LI C,et al.Atmospheric corrosion performance of structural steel bolts in the Wenchang marine environment,South China[J].Engineering Failure Analysis,2023,150:107352.
[21]甘卫华,徐綦鹤,黄雯,等.基于SLP和生产物流的F公司车间设施布局改善[J].华东交通大学学报,2015,32(3):55-62,102.GAN W H,XU Q H,HUANG W,et al.Facility layout improvement of company F based on SLP and production logistics[J].Journal of East China Jiaotong University,2015,32(3):55-62,102.
[22]LI Z W,WU Q H,ZHOU Y L,et al.Study on microstructure and electrochemical corrosion behavior of ζ-FeZn13 phase layer in hot-dip galvanized coating[J].Journal of Alloys and Compounds,2024,1003:175569.
[23]QIAO C,SHEN L F,HAO L,et al.Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere[J].Journal of Materials Science&Technology,2019,35(10):2345-2356.
[24]ODEVALL I,LEYGRAF C.The formation of Zn4Cl2(OH)4SO4·5H2Oin an urban and an industrial atmosphere[J].Corrosion Science,1994,36(9):1551-1559.
[25]PETERSEN R B,WELLS T,MELCHERS R E.Development of longterm localised corrosion of cast iron pipes in backfill soils based on time of wetness[J].Corrosion Engineering,Science and Technology,2020,55(7):550-561.
[26]赵骞,张洁,李乐民,等.安徽省电网用镀锌钢的大气腐蚀及其影响规律[J].材料保护,2024,57(5):191-198.ZHAO Q,ZHANG J,LI L M,et al.Study on the atmospheric corrosion of galvanized steel in the Anhui Province power grid and its influence law[J].Materials Protection,2024,57(5):191-198.
[27]LIU Y S,GAO H Y,WANG H,et al.Study on the corrosion behavior of hot-dip galvanized steel in simulated industrial atmospheric environments[J].International Journal of Electrochemical Science,2024,19(1):100445.
[28]PERMEH S,LAU K.Corrosion of galvanized steel in alkaline solution associated with sulfate and chloride ions[J].Construction and Building Materials,2023,392(15):131889.
[29]任啸,钟尧,吴卓霖,等.电力设备架构部件用Q235B钢和镀锌钢在工业高湿热环境中的腐蚀行为[J].腐蚀与防护,2022,43 (6):48-52,57.REN X,ZHONG Y,WU Z L,et al.Corrosion behavior of Q235B steel and galvanized steel for electrical equipment framework components in industrial high humidity and heat environment[J].Corrosion&Protection,2022,43(6):48-52,57.
[30]徐立.Q235钢、锌和镀锌钢在武汉土壤环境中的腐蚀行为研究[D].北京:中国机械科学研究总院,2020.XU L.Corrosion behavior of Q235 steel,zinc and galvanized steel in Wuhan soil environment[D].Beijing:China Academy of Machinery Science and Technology,2020.
[31]WANG S S,ZHANG J B,GHARBI O,et al.Electrochemical impedance spectroscopy[J].Nature Reviews Methods Primers,2021,1:41.
[32]师宓.基于环境影响评价浅谈热镀锌生产工艺及其污染控制[J].节能与环保,2022(3):83-85.SHI M.Discussion on hot dip galvanizing production process and its pollution control based on environmental impact assessment[J].Energy Conservation&Environmental Protection,2022(3):83-85.
[33]潘媛,张华,朱硕,等.基于IMPACT2002+的机械加工过程资源环境影响评价方法研究[J].现代制造工程,2019(3):17-23,37.PAN Y,ZHANG H,ZHU S,et al.Research on the resource and environment impact assessment of machining process based on IMPACT2002+[J].Modern Manufacturing Engineering,2019 (3):17-23,37.
基本信息:
DOI:10.19289/j.1004-227x.2025.03.005
中图分类号:TM75;TG172.3
引用信息:
[1]王倩,樊志彬,黄振宁等.热浸镀锌螺栓在不同大气环境中的腐蚀行为研究及其环保性能评价指标分析[J].电镀与涂饰,2025,44(03):34-45.DOI:10.19289/j.1004-227x.2025.03.005.
基金信息:
国网山东电力公司科技项目(2023A-182)