nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2026, 01, v.45 15-20
2A97铝锂合金防护涂层在严苛海洋环境下的老化行为研究
基金项目(Foundation): 十四五国防技术基础项目资助(JSHS2020209B001-1); 北京市自然科学基金资助(2244110)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2026.01.003
摘要:

[目的]研究2A97铝锂合金有机防护涂层在南海严苛海洋大气环境下的耐久性,为其在航空装备中的涂层选材与应用提供数据支持。[方法]通过户外曝露试验,结合宏观与微观形貌观察、光泽度与色差统计、电化学阻抗谱(EIS)分析,研究了经硫酸阳极氧化与环氧底漆涂层联合防护处理的铝锂合金试样在南海海洋大气环境中曝露0.5~2.0 a后的老化行为。[结果]随曝露时间延长,涂层表面微坑数量与面积持续增加,失光率和色差显著上升,低频阻抗模值下降。[结论]2A97铝锂合金表面硫酸阳极氧化+环氧底漆在南海严苛海洋大气环境中曝露2.0 a内涂层逐渐发生老化,主要由涂层中亲水基团的水解降解与光降解共同引起。

Abstract:

[Objective] The durability of organic protective coatings on 2A97 aluminum–lithium alloy in harsh marine atmosphere of South China Sea was studied to provide data support for coating selection and application in aviation equipment. [Method] The aging behavior of Al–Li alloy specimens treated via sulfuric acid anodizing followed by epoxy primer coating after 0.5 to 2.0 years of exposure in South China Sea marine atmosphere was studied through outdoor exposure test, combined with macro/microscopic morphology observation, glossiness and color difference measurement, and electrochemical impedance spectroscopy(EIS). [Result] With the extending of exposure time, the number and area of micro-pits on coating surface continuously increased, the glossiness loss and color difference of coating significantly rose, and the low-frequency impedance modulus decreased. [Conclusion] The coating on 2A97 Al–Li alloy surface treated by sulfuric acid anodizing and epoxy primer coating gradually aged within 2 years of exposure in the harsh marine atmosphere of South China Sea, primarily due to the combined effects of hydrolytic degradation of hydrophilic groups and photodegradation in the coating.

参考文献

[1]郑皓,杨健,寇飞行.铝锂合金薄板在国内航空领域的工程化应用与展望[J].中国材料进展, 2025, 44(2):193-198.ZHENG H, YANG J, KOU F X. Engineering application and prospect of aluminum–lithium alloy sheet in domestic aviation field[J].Materials China, 2025, 44(2):193-198.

[2]孙金娥,张丽春,张岩,等.增材制造铝锂合金的研究进展[J].粉末冶金工业, 2025, 35(1):138-145.SUN J E, ZHANG C L, ZHANG Y, et al. Research progress of aluminum–lithium alloy prepared by additive manufacturing[J].Powder Metallurgy Industry, 2025, 35(1):138-145.

[3]刘长琳,王建国,张祥斌,等.铝锂合金在航空航天领域的应用及发展现状[J].轻合金加工技术, 2024, 52(7):1-8.LIU C L, WANG J G, ZHANG X B, et al. Application and development status of Al–Li alloys in aerospace field[J]. Light Alloy Fabrication Technology, 2024, 52(7):1-8.

[4]贾静焕,刘明,骆晨,等. 2A97铝锂合金热带海洋大气环境腐蚀行为[J].电镀与精饰, 2023, 45(7):1-7.JIA J H, LIU M, LUO C, et al. Corrosion behavior of 2A97 Al–Li alloy in tropical marine atmosphere environment[J]. Plating and Finishing, 2023, 45(7):1-7.

[5]潘峤,骆晨,汤智慧,等. 2A97铝合金硫酸阳极氧化搅拌摩擦焊对接结构件在热带岛礁海洋大气环境暴露初期的失效行为[J].环境技术, 2020, 38(2):25-29, 45.PAN Q, LUO C, TANG Z H, et al. The degradation behaviors of 2A97aluminum alloy sulfuric acid anodized specimens made by friction stir welding during the early stages of exposing to marine atmosphere at an island located in tropical area[J]. Environmental Technology, 2020,38(2):25-29, 45.

[6]田共有.湿热环境中阳极氧化铝合金表面RFH环氧涂层的防护性能及其改善[J].涂料工业, 2018, 48(2):1-5.TIAN G Y. Influence of damp heat test on protective performance of RFH epoxy coating and its improvement[J]. Paint&Coatings Industry,2018, 48(2):1-5.

[7]李盛辉.碳钢和铝合金表面防腐涂层的失效研究及性能评估[D].北京:北京化工大学, 2024.LI S H. Failure studies and performance evaluation of anti-corrosion coating properties on carbon steel and Al alloy surfaces[D]. Beijing:Beijing University of Chemical Technology, 2024.

[8]刘玉欣,何东昱,孙哲,等.有机涂层防护性能的电化学研究进展[J].表面技术, 2021, 50(3):66-78.LIU Y X, HE D Y, SUN Z, et al. Research progress of electrochemical for protective properties of organic coatings[J]. Surface Technology,2021, 50(3):66-78.

[9]潘峤,杨丽媛,孙志华,等.涂漆铝合金铆接件在美济礁大气环境中初期失效行为[J].装备环境工程, 2019, 16(7):13-17.PAN Q, YANG L Y, SUN Z H, et al. Degradation behaviors of coated riveted structure during the early stages of exposing to marine atmospheric environment at mischief reef[J]. Equipment Environmental Engineering, 2019, 16(7):13-17.

[10]贾静焕,刘明,骆晨,等. 2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为[J].中国腐蚀与防护学报, 2023, 43(1):143-151.JIA J H, LIU M, LUO C, et al. Corrosion and aging behavior of 2A97Al–Li alloy with typical protective coatings in tropical marine atmosphere environment[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(1):143-151.

[11]谭晓明,王鹏,王德,等.基于电化学阻抗的航空有机涂层加速老化动力学规律研究[J].装备环境工程, 2017, 14(1):5-8.TAN X M, WANG P, WANG D, et al. Accelerated aging dynamic rules of aeronautic organic coating based on electrochemical impedance[J].Equipment Environmental Engineering, 2017, 14(1):5-8.

[12]孙志华,章妮,蔡健平,等.航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J].航空学报, 2008, 29(3):746-751.SUN Z H, ZHANG N, CAI J P, et al. Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):746-751.

[13]MARGARIT-MATTOS I C P. EIS and organic coatings performance:revisiting some key points[J]. Electrochim Acta, 2020, 354:136725.

[14]朱玉蓉,刘洪,吴向荣,等.有机硅改性环氧树脂的合成及其清漆涂层的防腐性能研究[J].有机硅材料, 2024, 38(6):7-13.ZHU Y R, LIU H, WU X R, et al. Research on synthesis of siliconemodified epoxy resin and anti-corrosion performance of its varnish coatings[J]. Silicone Material, 2024, 38(6):7-13.

[15]苏艳,舒畅,罗来正,等.航空有机涂层的老化失效规律和电化学表征[J].表面技术, 2011, 40(6):18-22.SU Y, SHU C, LUO L Z, et al. Weathering mechanism and electrochemical characterization of aircraft coating[J]. Surface Technology,2011, 40(6):18-22.

[16]王鹏,金平,谭晓明,等.基于失光率的飞机涂层自然曝晒与室内加速老化试验当量加速关系[J].航空材料学报, 2015, 35(6):77-82.WANG P, JIN P, TAN X M, et al. Accelerated equivalent relationship between natural exposure and accelerated experiments of aircraft coating based on gloss loss[J]. Journal of Aeronautical Materials, 2015,35(6):77-82.

[17]刘溅洪,罗来正.有机涂层环境适应性研究现状[J].合成材料老化与应用, 2022, 51(4):100-105.LIU J H, LUO L Z. Research status of the environmental adaptability of organic coatings[J]. Synthetic Materials Aging and Application,2022, 51(4):100-105.

[18]钱昂,王鹏,谭晓明,等.有机涂层老化失效研究及关键技术问题[J].机械科学与技术, 2017, 36(增刊1):84-90.QIAN A, WANG P, TAN X M, et al. Current status and key technology of research on aging failure of organic coating[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(Suppl.1):84-90.

[19]孙志华,章妮,蔡建平,等.航空用氟聚氨酯涂层加速老化试验研究[J].材料工程, 2009(10):57-60.SUN Z H, ZHANG N, CAI J P, et al. Study on accelerated aging test of containing fluorine polyurethane topcoat applied in aircraft[J]. Journal of Materials Engineering, 2009(10):57-60.

基本信息:

DOI:10.19289/j.1004-227x.2026.01.003

中图分类号:V261.933;TG174.4

引用信息:

[1]贾静焕,李钊,詹中伟,等.2A97铝锂合金防护涂层在严苛海洋环境下的老化行为研究[J].电镀与涂饰,2026,45(01):15-20.DOI:10.19289/j.1004-227x.2026.01.003.

基金信息:

十四五国防技术基础项目资助(JSHS2020209B001-1); 北京市自然科学基金资助(2244110)

检 索 高级检索