75 | 0 | 80 |
下载次数 | 被引频次 | 阅读次数 |
[目的]研究4种接地材料在模拟土壤氧浓差宏电池环境下的腐蚀行为。[方法]根据宏观形貌、微观形貌、电位差、锈层成分、宏电池电流密度、腐蚀速率、电化学阻抗谱等测试与表征结果,对比研究了不同接地材料在汕头土壤氧浓差宏电池环境下的腐蚀行为。[结果]导电高分子基复合接地材料在砂土与黏土中的腐蚀速率分别为0.13 mm/a与0.053 mm/a,大约是20钢的1/30、镀锌钢的1/28和紫铜的1/20。导电高分子基复合接地材料的宏电池电位差和电流密度最小,宏电池腐蚀效应最弱。[结论]在土壤氧浓差宏电池腐蚀环境下,导电高分子基复合接地材料的耐腐蚀性能最强。
Abstract:[Objective] The corrosion behavior of four grounding materials in a simulated soil oxygen concentration macrocell environment was studied. [Method] Through macroscopic and microscopic morphology observation, rust layer composition analysis, macrocell potential difference and current density measurement, corrosion rate calculation, and electrochemical impedance spectroscopy(EIS) characterization, the corrosion behaviors of different grounding materials in soil in Shantou area were evaluated and compared. [Result] The corrosion rate of conductive polymer-based composite grounding material was 0.13 mm/a in sandy soil and 0.053 mm/a in clay, which was approximately 1/30 of that of 20 steel, 1/28 of that of galvanized steel, and 1/20 of that of red copper. The conductive polymer-based composite material exhibited the lowest macrocell potential difference and current density, indicating the weakest macrocell corrosion effect. [Conclusion] Under oxygen concentration macrocell corrosion conditions in soil, the conductive polymer-based composite grounding material has the superior corrosion resistance as compared with conventional metallic materials.
[1]GARZON J,LOIERO R,JORRETO F.Mixed AC/DC electrified railway lines:a study of grounding[J].IEEE Vehicular Technology Magazine,2020,15(1):91-98.
[2]DEO N,KODIKARA J.Direct current resistivity and time domain induced polarization methods in soil corrosivity assessment for buried infrastructure[J].Journal of Applied Geophysics,2023,209:1005-1008.
[3]丁长军,杨焕新,王建东,等.接地网材料的腐蚀及其防护发展[J].腐蚀科学与防护技术,2019(1):109-113.DING C J,YANG H X,WANG J D,et al.Corrosion and protection of materials for grounding grid[J].Corrosion Science and Protection Technology,2019,31(1):5.
[4]LIU Y,CUI X,ZHAO Z.A magnetic detecting and evaluation method of substation's grounding grids with break and corrosion[J].Frontiers of Electrical and Electronic Engineering in China,2010,5(4):501-504.
[5]吕广宁.变电站接地网腐蚀分析及改造应用研究[D].北京:华北电力大学(北京),2017:11-12.LYU G N.Research on corrosion analysis and application of substation grounding network[D].Beijing:North China Electric Power University(Beijing),2017:11-12.
[6]徐立.Q235钢、锌和镀锌钢在武汉土壤环境中的腐蚀行为研究[D].北京:机械科学研究总院,2020:15.XU L.Study on corrosion behavior of Q235 steel,zinc and galvanized steel in soil environment in Wuhan[D].Beijing:General Research Institute of Mechanical Sciences,2020:15.
[7]李斌,刘磊,党朋,等.高防腐导线的防腐性钢芯腐蚀试验研究[J].南方电网技术,2019,13(6):64-69.LI B,LIU L,DANG P,et al.Experimental study on corrosion resistance of steel core of high corrosion resistance conductor[J].China Southern Power Grid technology,2019,13(6):64-69.
[8]朱志平,马骁,荆玲玲,等.变电站土壤腐蚀性评价及接地网金属腐蚀特性分析[J].电瓷避雷器,2009(4):18-22,26ZHU Z P,XIAO M A,JING L L,et al.Soil corrosion evaluation of substation and metal corrosion characteristics analysis for grounding grid[J].Insulators and Surge Arresters,2009(4):18-22,26.
[9]BO Z,ZHAO Z,XIANG C,et al.Diagnosis of breaks in substation's grounding grid by using the electromagnetic method[J].IEEETransactions on Magnetics,2002,38(2):473-476.
[10]JUERGEN W,MICHAEL R.Modelling of reinforcement corrosiongeometrical effects on macrocell corrosion[J].Materials and Corrosion,2010,61(6):155-159.
[11]KRANC S C,SAGUES A A.Computation of corrosion macrocell current distribution and electrochemical impedance of reinforcing steel in concrete[R].[S.l.]:ASTM International,1992:95-112.
[12]ZHOU K,CHEN D,HUANG H,et al.Study on high-efficiency anticorrosion and electrical conductivity of grounding material of zinc&magnesium alloy and copper and application[J].Petroleum Refinery Engineering,2010(6):62-64.
[13]曹忠露,陈浩宇,魏连雨,等.混凝土结构中2NO-的不均匀性对钢筋宏电池腐蚀行为的影响[J].腐蚀与防护,2017,38(7):537-542.CAO Z L,CHEN H Y,WEI L Y,et al.Effect of non-homogeneous nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in concrete structures[J].Corrosion&Protection,2017,38(7):537-542.
[14]CAO Z L,SU Z C,HIBINO M,et al.Effects of mineral admixtures on macrocell corrosion behaviors of steel bars in chloride-contaminated concrete[J].International Journal of Corrosion,2022:3332123.
[15]伍远辉,刘天模,罗宿星,等.土壤中宏电池对X70钢腐蚀作用的研究[J].山东大学学报(理学版),2009,44(1):24-27.WU Y H,LIU T M,LUO S X,et al.Study on corrosion effect of macrocell in soil on X70 steel[J].Journal of Shandong University,2009,44(1):24-27.
[16]伍远辉,孙成,勾华.硫酸盐还原菌对X70钢土壤宏电池腐蚀的影响[J].腐蚀科学与防护技术,2007,27(2):98-102.WU Y H,SUN C,GOU H.Effects of SRB on macrocell corrosion of X70 steel in soils[J].Corrosion Science and Protection Technology,2007,27(2):98-102.
[17]李俊松,周梦鑫,王震宇.新型接地材料在汕头土壤浸出液中的腐蚀电化学行为[J].电镀与涂饰,2024,43(6):134-139.LI J S,ZHOU M X,WANG Z Y.Corrosion electrochemical behavior of new grounding materials in soil leaching solution in Shantou[J].Electroplating&Finishing,2024,43(6):134-139.
[18]费小丹,李明齐,蔡铎昌,等.X70钢在卵石黄泥土中的盐浓差宏电池腐蚀[J].腐蚀与防护,2009,30(2):4.FEI X D,LI M Q,CAI D C,et al.Salt concentration difference macrocell corrosion of X70 steel in yellow pebble soil[J].Corrosion&Protection,2009,30(2):106-109.
[19]ZHANG X G G.Corrosion and Electrochemistry of Zinc[M].New York:Springer,1996:361-366.
[20]B Y S J A,B W Z,B M Z,et al.Corrosion current distribution of macrocell and microcell of steel bar in concrete exposed to chloride environments[J].Construction and Building Materials,2013,47 (5):104-110.
[21]刘焱,伍远辉,罗宿星.Q235钢在污染土壤中的氧浓差宏电池腐蚀[J].腐蚀与防护,2008,29(8):4.LIU Y,WU Y H,LUO S X.Macrocell corrosion of Q235 steel in polluted soils due to the difference of oxygen concentration[J].Corrosion&Protection,2008,29(8):438-441.
[22]JAMESH M I,WU G S,ZHAO Y,et al.Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer’s solution and simulated body fluid[J].Corrosion Science,2015,91:160-184.
[23]CHEN Y Y,CHUNG S C,SHIH H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J].Corrosion Science,2006,48:3547-3564.
[24]SETEVICH C,PRADO F,CANEIRO A.Study of the electrode polarization resistance of cobaltites with high Ba content as cathode for IT-SOFC[J].Journal of the Electrochemical Society,2017,164 (7):F759-F767.
[25]高立群,李洪锡,孙成,等.土壤宏电池腐蚀的实验室研究[J].腐蚀与防护,2001(7):279-282.GAO L Q,LI H X,SUN C,et al.Macrocell corrosion in soil[J].Corrosion&Protection,2001(7):279-282.
[26]POLDER R B,PEELEN W H A,SCHUTEN G.Microscopy study of the interface between concrete and the conductive coating used as an anode for cathodic protection[J].Corrosion of Reinforcement in Concrete,2007,90(15):277-287.
基本信息:
DOI:10.19289/j.1004-227x.2025.03.004
中图分类号:TG172.4;TM862
引用信息:
[1]周梦鑫,王震宇.四种接地材料在土壤中的氧浓差宏电池腐蚀行为[J].电镀与涂饰,2025,44(03):24-33.DOI:10.19289/j.1004-227x.2025.03.004.
基金信息: