| 1 | 0 | 6 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]7A04铝合金锻件常用于航空航天领域的主承力结构中,硫酸阳极氧化是其常用的表面处理工艺,研究锻件材料本身的组织对阳极氧化的影响对指导生产有重要意义。[方法]7A04接头零件锻件机加工完成后进行碱洗和阳极氧化表面处理,对零件材料组织及表面阳极氧化层进行宏观和微观观察,并开展能谱和金相分析,考察了基材的显微硬度和阳极氧化膜的厚度。[结果]经不同方式锻造后的零件两端在完成阳极氧化处理后的膜层颜色不同,一端为正常的黄色,另一端出现异常黑斑。在零件自由锻造过程中,变形量小、锻造速率高的部分位置材料晶粒未得到充分细化,对力学性能造成一定影响,也致使阳极氧化前处理碱洗后接头两端的表面平整度不同,因此最终形成的阳极氧化膜层的平整度不同,对光的反射及散射存在差异,从而导致颜色不同。然而黑斑位置的阳极氧化膜层同样致密连续,只是厚度略小,仍可起到一定的保护作用。[结论]7A04铝合金在自由锻造过程中应保证变形量、锻造速率及冷锻量符合要求,使材料组织得以充分均匀细化,才能保证阳极氧化表面处理品质及力学性能满足工程应用的要求。
Abstract:[Objective] 7A04 aluminum alloy forgings are commonly used in the primary load-bearing structures in the aerospace industry, with sulfuric acid anodizing being a standard surface treatment process. Studying the influence of 7A04 aluminum alloy forging's intrinsic microstructure on anodizing is significant for guiding production. [Method] 7A04 joint forgings underwent alkaline cleaning and anodizing after machining. The substrate and anodic oxide film were examined by macroscopic and microscopic observation, energy-dispersive spectroscopy, metallographic analysis, and microhardness testing. [Result] Due to different local forging conditions, the two ends of the joint exhibited different colors after anodizing: one end showed the normal yellow hue, while the other end displayed abnormal dark spots. During the free forging process, the areas with low deformation and high forging rate resulted in insufficient grain refinement, adversely affecting the mechanical properties. This also led to different surface flatness at the two ends of the joint after alkaline cleaning prior to anodizing, consequently producing anodic oxide films with different flatness. Differences in light reflection and scattering due to this surface morphology resulted in the observed color variation. However, the anodic oxide film at the dark spot area remained compact and continuous, albeit slightly thinner, and still provided a certain degree of protection. [Conclusion] For 7A04 aluminum alloy during free forging, it is essential to ensure that the deformation amount, forging rate, and cold forging amount meet the requirements to achieve sufficient and uniform grain refinement. This is crucial for guaranteeing that both the quality of the anodizing process and the mechanical properties satisfy the demands of engineering applications.
[1]孙卫刚,张治民,王强.锻造次数对7A04铝合金组织和力学性能影响[J].热加工工艺, 2008, 37(1):31-33.SUN W G, ZHANG Z M, WANG Q. Effect of forging times on structure and mechanical properties of 7A04 Al alloy[J]. Hot Working Technology, 2008, 37(1):31-33.
[2]陈昌麒.超高强度铝合金的发展[J].中国有色金属学报, 2002(3):22-27.CHEN C Q. Development of ultrahigh-strength aluminum alloys[J].The Chinese Journal of Nonferrous Metals, 2002(3):22-27.
[3]陈文思,李春宇,刘亮,等. 7A04铝合金深冷处理的组织和性能研究[J].现代机械, 2012(6):80-82, 90.CHEN W S, LI C Y, LIU L, et al. The study of cryogenic process in7A04 aluminum alloy[J]. Modern Machinery, 2012(6):80-82, 90.
[4]王兵,李建洲,张龙飞,等. 7A04铝合金接头等温锻造成形工艺研究[J].航天制造技术, 2015(5):30-32.WANG B, LI J Z, ZHANG L F, et al. Study on forming process of isothermal forging of 7A04 aluminum alloy joint[J]. Aerospace Manufacturing Technology, 2015(5):30-32.
[5]郭小艳,肖艳红,兰辉,等.超高强铝合金7A04高温流变行为的研究[J].锻压技术, 2011, 36(4):138-142.GUO X Y, XIAO Y H, LAN H, et al. Study on flow deformation behavior of high strength aluminum alloy 7A04 at elevated temperature[J]. Forging&Stamping Technology, 2011, 36(4):138-142.
[6]杜娟,田辉,陈亚军,等. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J].材料工程, 2018, 46(4):74-81.DU J, TIAN H, CHEN Y J, et al. Susceptibility to stress corrosion and crack initiation and propagation of 7A04 aluminum alloys[J]. Journal of Materials Engineering, 2018, 46(4):74-81.
[7]董超芳,安英辉,李晓刚,等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性[J].中国有色金属学报, 2009, 19(2):346-352.DONG C F, AN Y H, LI X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere[J].The Chinese Journal of Nonferrous Metals, 2009, 19(2):346-352.
[8]徐宏妍,第五江涛,李智勇,等. 7A04-T6铝合金中性盐雾腐蚀初期性能[J].材料保护, 2014, 47(8):40-42.XU H Y, DIWU J T, LI Z Y, et al. Corrosion behavior of 7A04-T6aluminum alloy at an early stage of neutral salt spray testing[J].Materials Protection, 2014, 47(8):40-42.
[9]朱祖芳.铝合金阳极氧化工艺技术应用手册[M].北京:冶金工业出版社, 2007.ZHU Z F. Handbook on Aluminum Alloy Anodizing:Technology and Application[M]. Beijing:Metallurgical Industry Press, 2007.
[10]吕弛,张锰,岳珊,等.硫酸阳极氧化对7A65航空铝合金疲劳性能的影响[J].电镀与涂饰, 2024, 43(2):18-26.LYU C, ZHANG M, YUE S, et al. Effect of sulfuric acid anodization on fatigue property of 7A65 aluminum alloy for aviation[J].Electroplating&Finishing, 2024, 43(2):18-26.
基本信息:
DOI:10.19289/j.1004-227x.2026.01.001
中图分类号:TG319;TG146.21
引用信息:
[1]韩磊,彭江涛,王建刚,等.7A04铝合金锻件材料组织对阳极氧化的影响[J].电镀与涂饰,2026,45(01):1-7.DOI:10.19289/j.1004-227x.2026.01.001.
基金信息:
天津市制造高质量发展专项基金(Z-J12401-技)