| 15 | 0 | 27 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]镁合金由于具有高比强度和低密度,被广泛用于3C电子产品及5G基站。然而镁合金耐蚀性较差制约了其进一步的应用,需要对镁合金进行适当的表面防护处理。[方法]通过蚀刻、漂白、化学转化、封闭等工艺,在镁合金表面制备了一种锆-钙-钒系复合转化膜。通过扫描电子显微镜(SEM)、能谱仪(EDS)、中性盐雾(NSS)试验、电化学工作站、直流电阻测试仪等手段对膜层的微观形貌、成分、耐蚀性及导电性进行了表征。[结果]原位转化处理后的镁合金表面形成了一层极薄的复合转化膜,动电位极化曲线和电化学阻抗谱(EIS)测试结果显示经转化处理后试样的膜电阻是未处理时的1.37倍,封闭后更增至2.10倍,且耐NSS时间超过48 h。蚀刻+漂白处理后镁合金的接触电阻从未处理时的0.711 mΩ略微下降至0.705 mΩ,而在转化+封闭处理后接触电阻仍维持在0.811 mΩ,展现出良好的导电性。[结论]该耐蚀-导电复合转化技术为镁合金在3C产品和5G基站领域中的应用提供了技术支持。
Abstract:[Objective] Magnesium alloys are widely used in 3C electronic products and 5G base stations due to their exceptional specific strength and low density. However, their inherent susceptibility to corrosion significantly impedes further applications, thereby necessitating effective surface protection strategies. [Method] A zirconium–calcium– vanadium composite conversion coating was prepared on magnesium alloy through etching, desmutting, chemical conversion, and sealing. The microstructure, elemental composition, corrosion resistance, and electrical conductivity of the conversion coating were characterized by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), neutral salt spray(NSS) testing, electrochemical measurements, and direct-current resistance measurement. [Result] An ultrathin composite conversion coating was formed on the magnesium alloy surface after in-situ conversion treatment. The results of potentiodynamic polarization and electrochemical impedance spectroscopic(EIS) measurements indicated that the film resistance of the treated specimen was increased to 1.37 times that of the untreated counterpart, further rising to 2.10 times after sealing, with withstanding NSS testing for over 48 hours. The contact resistance of the magnesium alloy slightly decreased from 0.711 mΩ(untreated) to 0.705 mΩ after etching and desmutting, and remained at 0.811 mΩ after chemical conversion and sealing, demonstrating excellent electrical conductivity. [Conclusion] The corrosion-resistant and conductive composite conversion technology provides technical support for the application of magnesium alloys in 3C products and 5G base stations.
[1] FATTAH-ALHOSSEINI A, CHAHARMAHALI R. Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process:a review[J]. Journal of Magnesium and Alloys, 2023, 11(12):4390-4406.
[2] XU R Z, LI Y, FAN B M, et al. One-step preparation of molybdate–stannate–tungstate composite conversion coating on magnesium alloy AZ91D and its microstructure and corrosion resistance[J].International Journal of Electrochemical Science, 2023, 18(12):100398.
[3]王向荣. AZ91D镁合金无铬化学转化膜的性能[J].电镀与涂饰,2020, 39(23):1643-1647.WANG X R. Properties of chromium-free conversion coating on AZ91D magnesium alloy[J]. Electroplating&Finishing, 2020, 39(23):1643-1647.
[4] RAFIEI S, HABIBOLAHZADEH A, WIESE B. Environmentconscious magnesium(ECO-Mg):a review[J]. Cleaner Materials,2024, 11:100230.
[5] LI S B, YANG X Y, HOU J T, et al. A review on thermal conductivity of magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2020, 8(1):78-90.
[6] SONG J F, SHE J, CHEN D L, et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1):1-41.
[7] YANG Y, XIONG X M, CHEN J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys, 2021, 9(3):705-747.
[8]周璐,李家文.一起电缆连接器接触不良故障分析与改进[J].航空维修与工程, 2025(6):103-106.ZHOU L, LI J W. Analysis and improvement of poor contact fault in cable connectors[J]. Aviation Maintenance&Engineering, 2025(6):103-106.
[9] CHUANG T H, WEN C K, CHEN S C, et al. P-type semi-transparent conductive NiO films with high deposition rate produced by superimposed high power impulse magnetron sputtering[J]. Ceramics International, 2020, 46(17):27695-27701.
[10] ZHANG Z P, YU G, OUYANG Y J, et al. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D[J]. Applied Surface Science, 2009, 255(17):7773-7779.
[11] LI T, LENG Z J, WANG X T, et al. Microstructure and electrical conductivity of electroless copper plating layer on magnesium alloy micro-arc oxidation coating[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(12):3950-3962.
[12] SHANG W, ZHAN X Q, WEN Y Q, et al. Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy[J]. Chemical Engineering Science, 2019, 207:1299-1308.
[13] DAROONPARVAR M, BAKHSHESHI-RAD H R, SABERI A, et al.Surface modification of magnesium alloys using thermal and solidstate cold spray processes:Challenges and latest progresses[J].Journal of Magnesium and Alloys, 2022, 10(8):2025-2061.
[14] SINGH C, TIWARI S K, SINGH R. Development of corrosionresistant electroplating on AZ91 Mg alloy by employing air and water-stable eutectic based ionic liquid bath[J]. Surface&Coatings Technology, 2021, 428:127881.
[15] DURáN K S, HERNáNDEZ-BARRIOS C A, COY A E, et al. Effect of fluoride conversion pretreatment time and the microstructure on the corrosion performance of TEOS–GPTMS sol–gel coatings deposited on the WE54 magnesium alloy[J]. Journal of Materials Research and Technology, 2021, 15:4220-4242.
[16] WANG H H, LIN N M, NOURI M, et al. Improvement in surface performance of stainless steel by nitride and carbon-based coatings prepared via physical vapor deposition for marine application[J].Journal of Materials Research and Technology, 2023, 27:6021-6046.
[17] KUO Y L, CHANG K H. Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys[J]. Surface&Coatings Technology, 2015, 283:194-200.
[18] KANDALA B S P K, ZHANG G Q, LCORRIVEAU C, et al.Preliminary study on modelling, fabrication by photo-chemical etching and in vivo testing of biodegradable magnesium AZ31 stents[J]. Bioactive Materials, 2021, 6(6):1663-1675.
[19] CHEN T Y, ZHANG Q Y, SHI J H, et al. Properties of AZ91D magnesium alloy Anodized in Oxalic and Sulfuric Acids and its corrosion resistance in 3.5%NaCl solution[J]. International Journal of Electrochemical Science, 2022, 17(12):221219.
[20] JIANG L, CUI X, JIN G, et al. Design and characterization of a novel Cu2.3Al1.3Ni1.7SnCr0.3 multi-principal element alloy coating on magnesium alloy by laser cladding[J]. Journal of Materials Science&Technology, 2023, 152:220-236.
[21] XIONG C S, LI W H, JIN Z Q, et al. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution[J]. Corrosion Science,2018, 139:275-288.
[22]祝闻. 6063铝合金表面钛-锆转化处理/静电喷涂涂层防护处理研究[D].广州:华南理工大学, 2017.ZHU W. Ti–Zr conversion treatment and electrostatic spraying coating for surface protection of 6063 aluminum alloys[D].Guangzhou:South China University of Technology, 2017.
[23]马成骥. AZ31镁合金钒/锆转化膜的制备及性能研究[D].邯郸:河北工程大学, 2019.MA C J. Preparation and properties of vanadium/zirconium conversion film on AZ31 magnesium alloy[D]. Handan:Hebei University of Engineering, 2019.
[24]易爱华.铝合金表面钛/锆转化膜的着色及性能优化[D].广州:华南理工大学, 2012.YI A H. The coloration and performance optimization of Ti/Zr conversion coating on aluminum alloy[D]. Guangzhou:South China University of Technology, 2012.
[25]朱枝胜,祝闻,黄毅,等. AZ31B镁合金表面无机-有机复合化学转化与膜层性能[J].电镀与涂饰, 2024, 43(8):88-95.ZHU Z S, ZHU W, HUANG Y, et al. Preparation of inorganic–organic composite film on AZ31B magnesium alloy by chemical conversion and its properties[J]. Electroplating&Finishing, 2024,43(8):88-95.
基本信息:
DOI:10.19289/j.1004-227x.2025.11.007
中图分类号:TG174.4
引用信息:
[1]张文丛,祝闻,刘宁华,等.镁合金表面原位耐蚀-导电复合转化膜制备与表征[J].电镀与涂饰,2025,44(11):41-48.DOI:10.19289/j.1004-227x.2025.11.007.
基金信息:
广东省普通高校特色创新项目(2023KTSCX147)