nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.44 9-15
两种热喷涂涂层在高温高氯熔盐中对基体材料保护性的对比
基金项目(Foundation): 国家自然科学基金(51961028)
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.01.002
摘要:

[目的]对比分析火力发电设备中常用的热喷涂Ni Cr/Cr_3C2层和45CT涂层对基体材料的保护性。[方法]将未喷涂与热喷涂两种涂层的P12钢表面涂覆15%NaCl+15%Na_2SO_4+70%K_2SO4合盐膜后分别置于650、700和750°C下腐蚀36 h。采用能谱仪(EDS)分析试样表面腐蚀产物的成分,采用扫描电镜(SEM)和X射线衍射仪(XRD)分析腐蚀后涂层的微观结构和相变。[结果]热喷涂两种涂层的P12钢在上述熔盐中腐蚀36 h后的质量损失相近,均为未喷涂时质量损失的1/2左右,其中45CT涂层试样的质量损失在腐蚀12h后明显趋缓。NiCr/Cr_3C2层在腐蚀过程中受S元素影响,与基体的结合力较45CT涂层差,出现开裂现象。[结论]45CT涂层在长时间服役时会表现出更好的耐蚀性。在高氯环境下,含铬量较高的NiCr/Cr_3C2层因结合力受到影响,故对基体的保护性能稍差于45CT涂层。

Abstract:

[Objective] The protective properties of two common thermally sprayed coatings i.e. NiCr/Cr_3C2and 45CT for the materials used in thermal power generation equipment were compared. [Method] The uncoated, NiCr/Cr_3C_2-coated, and 45CT-coated P12 steel specimens were coated with a mixture of 15% NaCl + 15% Na_2SO4+ 70% K_2SO4and then subjected to a 36-hour corrosion at temperature 650 °C, 700 °C, and 750 °C, respectively. The elemental compositions of the corrosion products formed on the specimens were analyzed by energy-dispersive spectroscopy(EDS).The microstructure and phase transformation of the coatings after corrosion were characterized by scanning electron microscopy(SEM) and X-ray diffraction(XRD). [Result] The mass loss of P12 steel sprayed with the two types of coatings after 36 hours of corrosion in molten salts was similar, and was approximately half that of the uncoated substrate.The weight loss of the 45CT-coated specimen significantly slowed down after 12 hours of corrosion. The NiCr/Cr_3C_2coating was affected by sulfur element during the corrosion process, resulting in weaker adhesion to the substrate than the 45CT coating, and cracking occurred. [Conclusion] The 45CT coating is expected to exhibit superior corrosion resistance during long-term services. In high-chloride-content environments, the NiCr/Cr_3C2coating with a higher chromium content has reduced adhesion due to the influence of sulfur, and therefore provides slightly inferior protection to the substrate compared to the 45CT coating.

参考文献

[1]王稳,罗锐,苗现华,等.超超临界火电用奥氏体耐热钢的热变形行为[J].塑性工程学报, 2018, 25(6):154-160.WANG W, LUO R, MIAO X H, et al. Hot deformation behavior of austenitic heat resistant steel for ultra-supercritical thermal power[J].Journal of Plasticity Engineering, 2018, 25(6):154-160.

[2]梁军.超超临界火电机组钢材选用分析[J].电力建设, 2012, 33(10):74-78.LIANG J. Analysis of steel application in ultra supercritical units[J].Electric Power Construction, 2012, 33(10):74-78.

[3]程晓农,王皎,罗锐,等.超(超)临界火电用新型奥氏体不锈钢的高温塑性变形行为及本构模型[J].塑性工程学报, 2018, 25(4):122-128.CHENG X N, WANG J, LUO R, et al. Plastic deformation behavior and constitutive model of new austenitic stainless steel at high temperature used for ultra super critical power plant[J]. Journal of Plasticity Engineering, 2018, 25(4):122-128.

[4]刘天佐,刘献良,赖云亭,等.电站锅炉过热器管焊缝开裂失效分析[J].电力科技与环保, 2022, 38(4):294-299.LIU T Z, LIU X L, LAI Y T, et al. Failure analysis of welding seam cracking of superheater tube of power station boiler[J]. Electric Power Environmental Protection, 2022, 38(4):294-299.

[5]金敏华,刘献良,赖云亭,等. 12Cr1MoVG高温过热器爆管失效分析[J].电力科技与环保, 2021, 37(5):42-45.JIN M H, LIU X L, LAI Y T, et al. Failure analysis of tube bursting of12Cr1MoVG high temperature superheater[J]. Electric Power Environmental Protection, 2021, 37(5):42-45.

[6]关鑫源,姚学会,李鑫杰,等.超临界锅炉水冷壁壁厚减薄原因分析及预防[J].锅炉技术, 2021, 52(6):48-54.GUAN X Y, YAO X H, LI X J, et al. Cause analysis and preventive measures of supercritical boiler spiral water wall thinning[J]. Boiler Technology, 2021, 52(6):48-54.

[7] DANESHVAR-FATAH F, MOSTAFAEI A, HOSSEINZADEHTAGHANI R, et al. Caustic corrosion in a boiler waterside tube:Root cause and mechanism[J]. Engineering Failure Analysis, 2013, 28:69-77.

[8]蒋旭光,刘晓博.垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考[J].中国腐蚀与防护学报, 2020, 40(3):205-214.JIANG X G, LIU X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers[J].Journal of Chinese Society for Corrosion and Protection, 2020, 40(3):205-214.

[9]梁慧超,吴浩民,梁志远.垃圾焚烧炉高温受热面腐蚀失效与防护[J].电力科技与环保, 2024, 40(1):68-76.LIANG H C, WU H M, LIANG Z Y. Corrosion failure and protection of high temperature heating surface of waste incinerator[J]. Electric Power Environmental Protection, 2024, 40(1):68-76.

[10]许明磊,严建华,马增益,等.垃圾焚烧炉受热面的积灰腐蚀机理分析[J].中国电机工程学报, 2007, 250(23):32-37.XU M L, YAN J H, MA Z Y, et al. Mechanism analysis of ash deposits corrosion in waste incinerator[J]. Proceedings of the CSEE, 2007,250(23):32-37.

[11]吴峰.高温氯腐蚀的特点[J].电站系统工程, 2003, 19(1):13-15.WU F. Characteristics of chlorine corrosion at high temperature[J].Power System Engineering, 2003, 19(1):13-15.

[12]阳燕,刘建华,包燕平,等.高压锅炉管用钢P12的洁净度分析[J].钢铁钒钛, 2010, 31(4):62-66, 79.YANG Y, LIU J H, BAO Y P, et al. Analysis of cleanliness of P12high-pressure boiler steel[J]. Iron Steel Vanadium Titanium, 2010, 31(4):62-66, 79.

[13]姚春江,王汉功,杨辉.铁铬铝、高铬镍、45CT涂层的抗热冲击和耐冲蚀性能的研究[J].中国表面工程, 2003(2):24-25.YAO C J, WANG H G, YANG H. Research on the thermal shock resistance and anti-corrosion of FeCrAl, Ni30Cr70 and 45CT[J]. China Surface Engineering, 2003(2):24-25.

[14]赵青山,宋学平,李来军,等. Ni60与Ni Cr–Cr3C2涂层的机械和热冲击性能对比研究[J].表面技术, 2023, 52(4):436-445.ZHAO Q S, SONG X P, LI L J, et al. Comparative study on mechanical impact and thermal shock properties of Ni60 and NiCr–Cr3C2 coatings[J].Surface Technology, 2023, 52(4):436-445.

[15]杨波,李茂东,刘康生,等.超音速喷涂45CT涂层在KCl+K2SO4+Na2SO4熔融盐中的热腐蚀行为[J].表面技术, 2017, 46(2):178-183.YANG B, LI M D, LIU K S, et al. Hot corrosion behavior of 45CT coating prepared by HOVF in KCl+K2SO4+Na2SO4 molten salt[J].Surface Technology, 2017, 46(2):178-183.

[16]董会,甘少明,杜永祺,等.激光扫描速率对Ni Cr/Cr3C2涂层微结构与耐磨性的影响[J].金属热处理, 2023, 48(11):282-287.DONG H, GAN S M, DU Y Q, et al. Effect of laser scanning rate on microstructure and wear resistance of NiCr/Cr3C2 coating[J]. Heat Treatment of Metals, 2023, 48(11):282-287.

[17]刘畅,张春晖,杜鹏程,等. TC4钛合金表面超音速火焰喷涂防护涂层及其摩擦学性能研究[J].表面技术, 2024, 53(5):69-77.LIU C, ZHANG C H, DU P C, et al. Tribological properties of HVOFsprayed protective coatings on TC4 titanium alloy[J]. Surface Technology, 2024, 53(5):69-77.

[18]陈辉,黄林滨,李朝兵,等.二次再热锅炉30%负荷下燃烧优化调整研究[J].电力科技与环保, 2023, 39(2):129-137.CHEN H, HUANG L B, LI C B, et al. Study on combustion optimization and adjustment of secondary reheat boiler at 30%load[J]. Electric Power Technology and Environmental Protection, 2023, 39(2):129-137.

[19]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社, 2001:201.LI M S. High Temperature Corrosion of Metals[M]. Beijing:Metallurgical Industry Press, 2001:201.

基本信息:

DOI:10.19289/j.1004-227x.2025.01.002

中图分类号:TG174.4

引用信息:

[1]黄世福,刘宣义,刘帅岐等.两种热喷涂涂层在高温高氯熔盐中对基体材料保护性的对比[J].电镀与涂饰,2025,44(01):9-15.DOI:10.19289/j.1004-227x.2025.01.002.

基金信息:

国家自然科学基金(51961028)

检 索 高级检索