134 | 0 | 104 |
下载次数 | 被引频次 | 阅读次数 |
[目的]土壤中往往存在多种阴离子,探究土壤中多种阴离子共存对不同金属腐蚀的影响具有重要的意义。[方法]通过浸泡腐蚀试验、电化学阻抗谱(EIS)和极化曲线测试,结合腐蚀产物形貌和元素组成分析,研究不同浓度比Cl-SO4sup>2-和HCO3-共存对Q235碳钢和304不锈钢在吉林地区土壤中腐蚀行为的影响。[结果]Cl-SO4sup>2-和HCO3-对Q235碳钢和304不锈钢的土壤腐蚀存在协同作用。两种接地钢的腐蚀速率均随时间延长呈总体减小的趋势,Q235钢以均匀腐蚀为主,304不锈钢则以点蚀为主。在相同Cl-SO4sup>2-/HCO3-浓度比下,304不锈钢的腐蚀速率HCO3-和腐蚀程度远低于Q235钢。Cl-其半径小及穿透力强而优先破坏钝化膜,引发点蚀。低浓度HCO3-会促进阳极溶解,高浓度HCO3-能够使Q235碳钢形成保护层,但会加剧304不锈钢的酸性环境腐蚀。[结论]Q235碳钢适用于HCO3-含量较高的土壤环境,304不锈钢需避免高Cl-HCO3-协同作用区域,该结论可为输电杆塔接地装置的材料选型及区域性腐蚀防护策略制定提供理论支撑。
Abstract:[Objective]Multiple anions are often present in soils,so it is important to study the effect of coexistence of multiple anions in soils on the corrosion of different metals.[Method]The effects of different concentration ratios of Cl-SO4sup>2-,andHCO3-on the corrosion behaviors of Q235 carbon steel and 304 stainless steel in Jilin region soil were studied by immersion corrosion test,electrochemical impedance spectroscopy (EIS),and polarization curve measurement,combined with morphological and elemental composition analysis of corrosion products.[Result]Cl-SO4sup>2-,andHCO3-exhibit synergistic effects on the soil corrosion of both Q235 carbon steel and 304 stainless steel.The corrosion rates of both grounding steels showed an overall decreasing trend over time.Q235 steel primarily experienced uniform corrosion,while 304 stainless steel mainly suffered from pitting corrosion.The corrosion rate and degree of 304 stainless steel were significantly lower than those of Q235 steel at the same concentration ratios of Cl-SO4sup>2-,andHCO3-.Cl~-preferentially disrupted the passivation film and triggered pitting corrosion due to its small radius and strong penetration ability.Low concentrations ofHCO3-promoted anodic dissolution,while high concentrations ofHCO3-could form a protective layer for Q235 carbon steel but exacerbated acidic environment corrosion for 304 stainless steel.[Conclusion]Q235 carbon steel is suitable for soil environments with higherHCO3-concentration,while 304 stainless steel should be avoided in areas with high Cl~-andHCO3-synergistic effects.These findings provide a theoretical foundation for material selection and regional corrosion protection strategies for transmission tower grounding devices.
[1]刘强.吉林省典型城市郊区菜地重金属污染与累积效应研究[D].北京:中国科学院研究生院(东北地理与农业生态研究所), 2014.LIU Q. A study on heavy metal pollution and cumulative effects in vegetable fields in typical suburban cities of Jilin Province[D]. Beijing:University of the Chinese Academy of Sciences, 2014.
[2]王会艳.吉林市城市表层土壤中重金属污染状况研究[D].吉林:吉林大学, 2009.WANG H Y. Research on heavy metal pollution in urban surface soil of Jilin City[D]. Jilin:Jilin University, 2009.
[3] WANG L, SHINOHARA T, ZHANG B P. Influence of chloride,sulfate and bicarbonate anions on the corrosion behavior of AZ31magnesium alloy[J]. Journal of Alloys and Compounds, 2010, 496(1/2):500-507.
[4]谢飞,王丹,吴明,等. X80钢焊接接头在不同pH值土壤中的腐蚀电化学特征[J].材料保护, 2015, 48(11):31-33, 47.XIE F, WANG D, WU M, et al. Corrosion electrochemical characteristics of X80 steel welded joints in soils with different pH values[J]. Material Protection, 2015, 48(11):31-33, 47.
[5] ZHANG Y F, YUAN X G, HUANG H J, et al. Influence of chloride ion concentration and temperature on the corrosion of Cu–Al composite plates in salt fog[J]. Journal of Alloys and Compounds, 2020, 821:153249.
[6] ELIYAN F F, ALFANTAZI A. Effect of bicarbonate concentration on corrosion of high strength steel[J]. Corrosion Engineering, Science and Technology, 2015, 50(3):178-185.
[7] LIU G, ZHANG Y, NI Z, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution[J].Construction and Building Materials, 2016, 115:1-5.
[8] Gao M, Wang H, Song Y, et al. Corrosion behavior on carbon steel in a simulated soil solution under the interaction effect of chloride and bicarbonate ions[J]. Journal of Materials Research and Technology,2022, 21:3014-3024.
[9]万政伟,王丹,谢飞,等.中性土壤环境中碳酸氢根离子与硫酸根离子协同作用对X70钢腐蚀行为的影响[J].材料保护, 2020, 53(6):12-17.WAN Z W, WANG D, XIE F, et al. The synergistic effect of bicarbonate ion and sulfate ion on the corrosion behavior of X70 steel in neutral soil environment[J]. Material Protection, 2020, 53(6):12-17.
[10]陈日,郑志军,孟晓波,等. Q235钢在广西和贵州输电杆塔现场的大气腐蚀行为研究[J].热加工工艺, 2018, 47(6):122-128.CHEN R, ZHENG Z J, MENG X B, et al. Research on atmospheric corrosion behavior of Q235 steel in transmission tower sites in Guangxi and Guizhou[J]. Hot working process, 2018, 47(6):122-128.
[11]周经中,何学敏,孙阔腾,等.强腐蚀地区输电线路腐蚀及监测防护的研究现状[J].腐蚀与防护, 2021, 42(4):1-8.ZHOU J Z HE X M, SUN K T, et al. Research status on corrosion and monitoring protection of transmission lines in highly corrosive areas[J]Corrosion and Protection, 2021, 42(4):1-8.
[12]丁长军,杨焕新,王建东,等.接地网材料的腐蚀及其防护发展[J].腐蚀科学与防护技术, 2019, 31(1):109-113.DING C J, YANG H X, WANG J D, et al. Corrosion and Protection Development of Grounding Grid Materials[J]. Corrosion Science and Protection Technology, 2019, 31(1):109-113.
[13] ZHAO J, MENG X, REN X, et al. review on soil corrosion and protection of grounding grids[J]. Materials, 2024, 17(2):507.
[14] LORANG G, BELO M D C, SIM?ES A M P, et al. Chemical composition of passive films on AISI 304 stainless steel[J]. Journal of the Electrochemical Society, 1994, 141(12):3347.
[15]张宇,刘亚鹏,李开伟,等.南海大气环境下304不锈钢的点蚀特性研究[J].表面技术, 2018, 47(12):44-50.ZHANG Y, LIU Y P, LI K W, et al. Study on pitting corrosion characteristics of 304 stainless steel in the atmospheric environment of the South China Sea[J]. Surface Technology, 2018, 47(12):44-50.
[16] WANG G, WU Q, LI X Z, et al. Microscopic analysis of steel corrosion products in seawater and sea-sand concrete[J]. Materials, 2019, 12(20):3330.
[17]李文翰,郑鹏华,彭敦诚,等.广西工业与沿海地区Q235碳钢的早期大气腐蚀研究[J].材料保护, 2020, 53(6):18-26, 40.LI W H, ZHENG P H, PENG D C, et al. Research on early atmospheric corrosion of Q235 carbon steel in Guangxi industry and coastal areas[J] Material Protection, 2020, 53(6):18-26, 40.
[18]李俊松,周梦鑫,王震宇.新型接地材料在汕头土壤浸出液中的腐蚀电化学行为[J].电镀与涂饰, 2024, 43(6):134-139.LI J S, ZHOU M X, WANG Z Y. Corrosion electrochemical behavior of new grounding materials in Shantou soil leaching solution[J].Electroplating&Finishing, 2024,43(6):134-139.
[19]王超,王佳秋,王艳娟,等.高温环境下模拟CO2驱采出液中304不锈钢的腐蚀行为[J].化学工程师, 2024, 38(5):103-106.WANG C, WANG J Q, WANG Y J, et al. Corrosion behavior of 304stainless steel in simulated CO2 flooding production fluid under high temperature environment[J]. Chemical Engineer, 2024, 38(5):103-106.
[20] WANG S, LIU D, DU N, et al. Relationship between dissolved oxygen and corrosion characterization of X80 steel in acidic soil simulated solution[J]. International Journal of Electrochemical Science, 2015,10(5):4393-4404.
[21]苏建文,董小平,高腾远,等. SO24-浓度对含Cl-溶液中304不锈钢腐蚀损伤影响[J].钢铁钒钛, 2022, 43(1):165-173.SU J W, DONG X P, GAO T Y, et al. The effect of SO24-concentration on corrosion damage of 304 stainless steel in Cl-containing solution[J]Steel, Vanadium and Titanium, 2022, 43(1):165-173.
[22] ZHANG S, HOU L, DU H, et al. An electrochemical study on the effect of bicarbonate ion on the corrosion behaviour of carbon steel in CO2saturated NaCl solutions[J]. Vacuum, 2019, 167:389-392.
[23] VIDEM K, KOREN A M. Corrosion, passivity, and pitting of carbon steel in aqueous solutions of HCO3-, CO2, and Cl-[J]. Corrosion, 1993,49(9):746-754.
[24]任呈强. N80油管钢在含CO2/H2S高温高压两相介质中的电化学腐蚀行为及缓蚀机理研究[D].西安:西北工业大学, 2003.REN C Q. Electrochemical corrosion behavior and inhibition mechanism of N80 oil pipe steel in high-temperature and high-pressure two-phase media containing CO2/H2S[D]. Xi’an:Northwestern Polytechnical University, 2003.
基本信息:
DOI:10.19289/j.1004-227x.2025.03.003
中图分类号:TG172.4
引用信息:
[1]高健桐,张喻贤,张铁涛等.多种阴离子共存对接地金属在吉林地区土壤中腐蚀行为的影响[J].电镀与涂饰,2025,44(03):16-23.DOI:10.19289/j.1004-227x.2025.03.003.
基金信息:
国网吉林省电力有限公司科技项目(2024-10); 吉林省发改委产业技术研究与开发项目(2020C028-5)