| 35 | 0 | 62 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]为解决电解除油过程中槽液成分实时监测难、补料控制精度低等问题,设计了一套基于模糊PID(比例-积分-微分)控制的在线分析与自动补料系统。该系统结合PLC(可编程逻辑控制器)、工业计算机(IPC)及滴定分析模块,实现了自动取样、定量分析与闭环控制功能。[方法]通过建立浓度控制模型,利用Simulink对传统PID与模糊PID控制策略进行仿真对比,并在实验平台上完成验证。[结果]当目标浓度为24.5 g/L时,采用模糊PID控制后:最大稳态误差从0.09 g/L降至0.01 g/L,降幅为88%~96%;系统分析误差小于1%,控制精度提升至0.04%~0.20%;在扰动情况下,控制精度较传统方法提高40%以上。[结论]该系统在提升除油工艺自动化水平和稳定性方面具有显著优势,具备良好的工程应用前景。
Abstract:[Objective] To address the challenges of real-time monitoring of bath composition and low dosing control accuracy in the electrochemical degreasing process, an online analysis and automatic dosing system based on fuzzy PID(proportional–integral–derivative) control was designed. The system integrates a programmable logic controller(PLC), industrial personal computer(IPC), and titration analysis module to achieve automatic sampling, quantitative analysis, and closed-loop control. [Method] A mathematical model for concentration control was developed, and comparative simulations between conventional PID and fuzzy PID control strategies were performed using Simulink. Experimental validation was subsequently carried out on an industrial-scale test platform. [Result] With a target concentration of 24.5 g/L, the fuzzy PID control achieved:(1) a reduction in maximum steady-state error from 0.09 g/L to 0.01 g/L(representing an 88%-96% improvement);(2) system analysis error maintained below 1%, while control accuracy was enhanced to 0.04%-0.20%; and(3) over 40% higher control precision under disturbances compared to conventional methods. [Conclusion] The system demonstrates significant advantages in enhancing the automation level and stability of degreasing processes, showing strong potential for engineering applications.
[1]舒莉,刘小华,魏喆良.甲酸盐三价铬电镀工艺的研究[J].表面技术, 2014, 43(2):83-88.SHU L, LIU X H, WEI Z L. Technology of trivalent chromium electroplating in formate system[J]. Surface Technology, 2014, 43(2):83-88.
[2]李明,李敏伟,马英,等.电镀Cd层在海洋大气环境中的腐蚀行为研究[J].装备环境工程, 2013, 10(1):33-37.LI M, LI M W, M Y, et al. Study of cadmium electroplates’ corrosion behavior in marine atmosphere[J]. Equipment Environmental Engineering, 2013, 10(1):33-37.
[3]张柳丽,林生军,李宝增,等.前处理方法对不锈钢涂装性能的影响[J].电镀与精饰, 2016, 38(9):31-35.ZHANG L L, LIN S J, LI B Z, et al. Influence of pretreatment technology on painting performance of stainless steel[J]. Plating&Finishing, 2016, 38(9):31-35.
[4]吴小松,张天鹏,荣光,等.不锈钢汽车零部件涂装前处理工艺设计及应用[J].当代化工研究, 2024(17):155-157.WU X S, Z T P, RONG G, et al. Stainless automotive parts coating pretreatment process design and application[J]. Modern Chemical Research, 2024(17):155-157.
[5] ZHANG Y X, SHI Q, LUO M X, et al. Improved bauxite residue dealkalization by combination of aerated washing and electrodialysis[J]. Journal of Hazardous Materials, 2019, 364:682-690.
[6]陈冬,段付岗.化工生产中磷酸用作清洗剂的研究与应用[J].硫磷设计与粉体工程, 2024(3):44-47.CHEN D, DUAN F G. Research and application of phosphoric acid as a cleaning agent in chemical production[J]. Sulphur Phosphorus&Bulk Materials Handling Related Engineering, 2024(3):44-47.
[7] BAJWA R S, KHAN Z, BAKOLAS V, et al. Effect of bath ionic strength on adhesion and tribological properties of pure nickel and Nibased nanocomposite coatings[J]. Journal of Adhesion Science and Technology, 2016, 30(6):653-665.
[8] ADRITA M B, BREM A, O’SULLIVAN D, et al. Methodology for data-informed process improvement to enable automated manufacturing in current manual processes[J]. Applied Sciences, 2021, 11(9):3889.
[9]杨静,钱铖,周建国.汽车涂装前处理的自动补加系统[J].电镀与涂饰, 2019, 38(14):747-751.YANG J, QIAN C, ZHOU J G. Automatic replenishment system for pretreatment of automotive painting[J]. Electroplating&Finishing,2019, 38(14):747-751.
[10]赵红珠.可燃气体和氧气检测仪在加热炉尾气中的自动监测探讨[J].云南化工, 2023, 50(1):77-80.ZHAO H Z. Discussion on automatic monitoring of combustible and oxygen detector in tail gas of heating furnace[J]. Yunnan Chemical Technology, 2023, 50(1):77-80.
[11]汤春球,刘凤来,余自良.基于模糊PID的水肥一体化灌溉控制系统设计[J].数字制造科学, 2023, 21(4):293-296.TANG C Q, LIU F L, YU Z L. Design of integrated water and fertilizer irrigation control system based on fuzzy PID[J]. Digital Manufacturing Science, 2023, 21(4):293-296.
[12]孙国亮.基于PLC的纸浆浓度PID控制系统设计[J].造纸装备及材料, 2023, 52(5):1-3.SUN G L. Design of pulp concentration PID control system based on PLC[J]. Papermaking Equipment and Materials, 2023, 52(5):1-3.
[13]唐腾飞,李霞,胡猛超,等.基于PSO算法优化水肥配比和水肥pH控制系统[J/OL].天津理工大学学报[2024–10–28].https://link.cnki.net/urlid/12.1374.n.20241028.0845.006.TANG T F, LI X, HU M C, et al. Optimization of water-fertilizer ratios and water-fertilizer pH control system based on PSO algorithm[J/OL].Journal of Tianjin University of Technology[2024–10–28].https://link.cnki.net/urlid/12.1374.n.20241028.0845.006.
基本信息:
DOI:10.19289/j.1004-227x.2025.09.008
中图分类号:TQ153;TP273
引用信息:
[1]岳恒,杜东兴,唐曦,等.电解除油槽液在线分析与补料系统抗干扰稳定性控制研究[J].电镀与涂饰,2025,44(09):58-65.DOI:10.19289/j.1004-227x.2025.09.008.
基金信息: