nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 04 v.44 1-8
热浸镀锌钢筋在海洋混凝土环境中的钝化与腐蚀行为
基金项目(Foundation):
邮箱(Email):
DOI: 10.19289/j.1004-227x.2025.04.001
中文作者单位:

中交四航工程研究院有限公司,水工构造物耐久性技术交通运输行业重点实验室,中交集团建筑材料重点实验室;

摘要(Abstract):

[目的]研究热浸镀锌钢筋在混凝土养护阶段的钝化行为、氯盐侵蚀下的腐蚀行为及其在海水海砂混凝土中的长期服役性能。[方法]通过开路电位(OCP)、电化学阻抗谱(EIS)和动电位极化(PDP)曲线测试,结合表面形貌观察,研究镀锌钢筋在混凝土孔隙模拟液(pH=12.5)中的自然钝化行为;通过梯度氯盐添加法评估其抗氯盐腐蚀性能;以及将镀锌钢筋浇筑在海水海砂混凝土中,研究其在模拟海水溶液中的腐蚀行为。[结果]镀锌钢筋在混凝土孔隙模拟液中可自然钝化形成致密的膜层,起到有效的电化学保护作用;镀锌钢筋在含氯混凝土孔隙模拟液中的耐蚀性随Cl-浓度增大而逐渐降低,当Cl-浓度为0.08 mol/L时,钝化膜破裂,镀锌层开始发生腐蚀。在海水海砂混凝土中浸泡140 d后,镀锌层虽部分溶解但未失去对钢筋基体的保护作用。[结论]镀锌钢筋在混凝土中具备良好的钝化能力,其耐Cl-腐蚀的临界浓度为0.07~0.08 mol/L,在海水海砂混凝土环境中具有良好的长期服役性能。本文的研究结果可为镀锌钢筋的海洋工程应用提供可行性依据。

关键词(KeyWords): 热浸镀锌钢筋;自然钝化;抗氯盐侵蚀性能;海水-海砂混凝土;长期服役
参考文献

[1] AHMAD S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction:a review[J]. Cement and Concrete Composites, 2003, 25(4/5):459-471.

[2] ANDRADE C, KEDDAM M, NóVOA X R, et al. Electrochemical behavior of steel rebars in concrete:influence of environmental factors and cement chemistry[J]. Electrochimica Acta, 2001, 46(24/25):3905-3912.

[3] ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete:a review[J]. Cement and Concrete Research,2009, 39(12):1122-1138.

[4] BADDOO N R. Stainless steel in construction:a review of research,applications, challenges and opportunities[J]. Journal of Constructional Steel Research, 2008, 64(11):1199-1206.

[5]宋丹,游凯,程兆俊,等.混凝土结构用钢筋耐蚀性提升研究进展[J].热加工工艺, 2016, 45(2):9-13.SONG D, YOU K, CHEN Z J, et al. Research progress of corrosionresistance improvement of rebar used in concrete structure[J]. Hot Working Technology, 2016, 45(2):9-13.

[6]周贺贺,赵晋斌,蔡佳兴,等.耐蚀钢筋研究现状及腐蚀评价方法分析[J].腐蚀与防护, 2017, 38(9):665-682.ZHOU H H, ZHAO J B, CAI J X, et al. Recent status of research on corrosion resistant steel bars and analysis on existing corrosion evaluation methods[J]. Corrosion&Protection, 2017, 38(9):665-682.

[7]汪燃原,孔纲,卢锦堂.混凝土中热浸镀锌钢筋的研究及应用[J].电镀与涂饰, 2009, 28(10):22-25.WANG R Y, KONG G, LU J T. Research and application of hot dip galvanised steel bars in concrete[J]. Electroplating&Finishing, 2009,28(10):22-25.

[8]郑海兵.镀锌钢筋在内掺辅助胶凝材料混凝土中的防腐蚀机理[D].青岛:中国科学院大学, 2018.ZHENG H B. Corrosion inhibition mechanism of galvanized steel in concrete with supplementary cementitious materials[D]. Qingdao:University of Chinese Academy of Sciences, 2018.

[9] YEOMANS S R. Galvanized Steel Reinforcement in Concrete[M].Oxford:Elsevier, 2004.

[10] TAN Z Q, HANSSON C M. Effect of surface condition on the initial corrosion of galvanized reinforcing steel embedded in concrete[J].Corrosion Science, 2008, 50(9):2512-2522.

[11] MACIAS A, ANDRADE C. Corrosion of galvanized steel reinforcements in alkaline solutions, Part 1:Electrochemical results[J]. British Corrosion Journal, 1987, 22(2):113-118.

[12] MACIAS A, ANDRADE C. Corrosion of galvanized steel reinforcements in alkaline solutions, Part 2:SEM study and identification of corrosion products[J]. British Corrosion Journal, 1987,22(2):119-129.

[13] YEOMANS S R. Performance of black, galvanized, and epoxy-coated reinforcing steel in chloride[J]. Corrosion Engineering, Science and Technology, 1994, 50(1):72-81.

[14] DHONDY T, REMENNIKOV A, SHIEKH M N. Benefits of using sea sand and seawater in concrete:a comprehensive review[J]. Australian Journal of Structural Engineering, 2019, 20(4):280-289.

[15]关国浩,王学志,贺晶晶.海水海砂混凝土研究进展[J].硅酸盐通报, 2022, 41(5):1483-1493.GUAN G H, WANG X Z, HE J J. Research progress of seawater seasand concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5):1483-1493.

[16]毛江鸿,金伟良,张华,等.海砂混凝土建筑的耐久性提升技术及应用研究[J].中国腐蚀与防护学报, 2015, 35(6):563-570.MAO J H, JIN W L, ZHANG H, et al. Technology for enhancing durability of structures of sea-sand concrete and its application[J].Journal of Chinese Society for Corrosion and Protection, 2015, 35(6):563-570.

[17] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction:current status and future opportunities[J].Construction and Building Materials, 2017, 155:1101-1111.

[18] LIM E, ROXAS C, GALLARDO R, et al. Strength and Corrosion behavior of mortar mixed and cured with seawater with various fly ash replacement ratios[J]. Asian Journal of Civil Engineering, 2015, 16(6):835-849.

[19]张波,林锦眉,何汝基.镀锌钢筋在海砂与河砂砂浆试块中的电化学阻抗谱比较研究[J].新技术新工艺, 2020(6):58-62.ZHANG B, LIN J M, HE R J. Research on comparison of electrochemical impedance spectroscopy of galvanized steel in sea sand and river mortar test blocks[J]. New Technology&New Process,2020(6):58-62.

[20] WILLIAMSON J, AZAD V J, ISGOR O B. Modeling Electronic Properties of the Passive Films on Carbon Steel in Simulated Concrete Pore Solutions[J]. Journal of the Electrochemical Society, 2015, 162(12):619-629.

[21] ZHENG H B, DAI J G, LI W H, et al. Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution[J]. Construction and Building Materials, 2018, 166:572-580.

[22] FARINA S B, DUFFO G S. Corrosion of zinc in simulated carbonated concrete pore solutions[J]. Electrochimica Acta, 2007, 52(16):5131-5139.

[23] GHOSH R, SINGH D D N. Kinetics, mechanism and characterisation of passive film formed on hot dip galvanized coating exposed in simulated concrete pore solution[J]. Surface and Coatings Technology,2007, 201(16/17):7346-7359.

基本信息:

DOI:10.19289/j.1004-227x.2025.04.001

中图分类号:TU528;TG172

引用信息:

[1]刘国强,张东方,陈昊翔等.热浸镀锌钢筋在海洋混凝土环境中的钝化与腐蚀行为[J].电镀与涂饰,2025,44(04):1-8.DOI:10.19289/j.1004-227x.2025.04.001.

基金信息:

检 索 高级检索