| 40 | 0 | 21 |
| 下载次数 | 被引频次 | 阅读次数 |
[目的]为解决热浸镀锌铝镁合金钢板表面色调单一、易出现黑变缺陷的问题,并满足市场对黑色镀层钢板的高品质需求,开发一种黑色微弧氧化(MAO)表面处理工艺。[方法]采用微弧氧化技术对高耐蚀低铝锌铝镁合金钢进行黑化处理。通过正交试验优化电解液配方。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学综合测试仪和中性盐雾腐蚀试验,分析了锌铝镁镀层钢板MAO处理前后的微观形貌、组织结构及腐蚀行为。[结果]较优的电解液配方为:硅酸钠9 g/L,氢氧化钾6 g/L,硫酸铜6 g/L。该配方制备的膜层颜色均匀,明度(L*)为38.86,厚度为5~7μm,呈蜂窝状多孔结构,主要由ZnO和CuO组成。电化学测试结果表明,经微弧氧化处理后样品的腐蚀电流密度从5.46μA/cm2降至2.19μA/cm2,经硅烷封孔处理后进一步降至0.24μA/cm2,在中性盐雾试验中的红锈出现时间超过3 000 h。[结论]微弧氧化处理可在Zn–Al–Mg合金镀层表面形成均匀的黑色多孔陶瓷膜,显著提升其耐腐蚀性能;而封孔处理进一步增强了膜层的致密性与防护效果。本研究为高性能黑色锌铝镁镀层钢板的开发与应用提供了可靠工艺路径。
Abstract:[Objective] A black micro-arc oxidation(MAO) surface treatment process was developed to address the issues of monochromatic appearance and blackening defects on hot-dip Zn–Al–Mg alloy coated steel, while meeting the market demand for high-quality black-coated steel plates. [Method] A black coating was prepared on highly corrosionresistant low-aluminum hot-dip Zn–Al–Mg alloy coated steel via micro-arc oxidation. The electrolyte formulation was optimized through orthogonal experiments. The microstructure, phase composition, and corrosion behavior of hot-dip Zn–Al–Mg alloy coated steel before and after MAO treatment were analyzed by scanning electron microscopy(SEM), X-ray diffraction(XRD), electrochemical testing, and neutral salt spray corrosion test. [Result] The electrolyte formulation was optimized as follows: sodium silicate 9 g/L, potassium hydroxide 6 g/L, and copper sulfate 6 g/L. The coating prepared with the optimized electrolyte exhibited uniform color, a lightness(L*) value of 38.86, a thickness of 5-7 μm, and a honeycomb-like porous structure composed mainly of ZnO and CuO. Electrochemical test results showed that the corrosion current density of hot-dip Zn–Al–Mg alloy coated steel decreased from 5.46 μA/cm2 to 2.19 μA/cm2 after MAO treatment, and further reduced to 0.24 μA/cm2 after sealing with silane. No red rust was observed on the specimen treated by micro-arc oxidation and subsequently sealed, even after 3 000 hours of neutral salt spray testing. [Conclusion] A uniform black porous ceramic coating can be formed on the Zn–Al–Mg alloy coating after micro-arc oxidation, significantly improving its corrosion resistance. The compactness and protective performance of the MAO coating is enhanced after sealing treatment further. This study provides a reliable process route for the development and application of high-performance black Zn–Al–Mg-coated steel plates.
[1]许红.新型锌铝镁合金镀层工艺及其耐蚀机理的研究[D].济南:山东大学, 2009.XU H. Study on the Process and anticorrosion mechanism of hot dipping zinc–aluminium–magnesium alloy coating[D]. Jinan:Shandong University, 2009.
[2]周静茹.微合金化对锌铝镁合金组织和性能的影响[D].徐州:中国矿业大学, 2023.ZHOU J R. Effect of microalloying on microstructure and properties of Zn–Al–Mg alloy[D]. Xuzhou:China University of Mining and Technology, 2023.
[3]张子聪.锌铝镁合金镀层无铬钝化工艺研究[D].沈阳:沈阳理工大学, 2022.ZHANG Z C. Study on chromium-free passivation process of ZAM alloy coating[D]. Shenyang:Shenyang Ligong University, 2022.
[4]宋裕.热浸镀锌-铝-镁合金镀层钢板的研究与应用现状[J].电镀与涂饰, 2019, 38(9):442-446.SONG Y. Current research and application status of hot-dip zinc–aluminum–magnesium alloy-coated steels[J]. Electroplating&Finishing, 2019, 38(9):442-446.
[5]顾天真. Zn–Al–Mg镀层在典型严酷大气中的腐蚀行为与机理研究[D].合肥:中国科学技术大学, 2023.GU T Z. Corrosion behavior and mechanism of Zn–Al–Mg coating at typically harsh atmospheric environment[D]. Hefei:University of Science and Technology of China, 2023.
[6]蒋光锐,刘广会. Zn–Al–Mg合金的凝固组织及其耐腐蚀性能[J].中国腐蚀与防护学报, 2018, 38(2):191-196.JIANG G R, LIU G H. Microstructure and corrosion resistance of solidified Zn–Al–Mg alloys[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(2):191-196.
[7]辜海芳.国内外锌铝镁镀层开发现状[J].冶金管理, 2017(9):54-57.GU H F. Development status of Zn–Al–Mg coating at home and abroad[J]. China Steel Focus, 2017(9):54-57.
[8]谢英秀,金鑫焱,王利.热浸镀锌铝镁镀层开发及应用进展[J].钢铁研究学报, 2017, 29(3):167-174.XIE Y X, JIN X Y, WANG L. Development and application of hot-dip galvanized zinc–aluminum–magnesium coating[J]. Journal of Iron and Steel Research, 2017, 29(3):167-174.
[9]袁训华,林源,张启富.热镀锌铝镁镀层的切边保护性能和耐腐蚀机理[J].中国有色金属学报, 2015, 25(9):2453-2463.YUAN X H, LIN Y, ZHANG Q F. Cut-edge protection performance and corrosion resistance mechanisms of galvanized Zn–Al–Mg alloy coating[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9):2453-2463.
[10]宋志岗,王淑华,梅淑文,等.拉伸应变对锌铝镁镀层裂纹及耐蚀性的影响[J].电镀与精饰, 2024, 46(3):44-49.SONG Z G, WANG S H, MEI S W, et al. The effect of tensile deformation on crack and corrosion resistance of Zn–Al–Mg coating[J]. Plating and Finishing, 2024, 46(3):44-49.
[11]首钢集团有限公司.一种抗黑变锌铝镁镀层钢及其制备方法:201910211408.6[P]. 2021–06–15.JIANG G R, TENG H X, SHANG T, et al. Anti-blackening Zn–Al–Mg coating steel and preparation method thereof:CN110004389B[P].2021–06–15.
[12]首钢集团有限公司,首钢京唐钢铁联合有限责任公司.一种耐黑变锌铝镁镀层钢板及其制备方法:202010520563.9[P]. 2020-09-18.JIANG G R, TENG H X, LI Y, et al. Blackening-resistant zinc–aluminum–magnesium coated steel plate and preparation method thereof:CN111676434A[P]. 2020–09–18.
[13]日新制钢株式会社.黑色镀层钢板:201280072590.8[P]. 2016–06–22.NAKANO T, YAMAMOTO M, TAKETSU H. Black-plated steel sheet:CN104245997B[P]. 2016–06–22.
[14]卢立红. Q235钢表面热镀铝微弧氧化陶瓷层的性能[J].腐蚀与防护, 2007, 28(8):425-426, 433.LU L H. Properties of ceramic coating obtained by micro-arc oxidation of hot-dip aluminum coating on Q235[J]. Corrosion&Protection, 2007,28(8):425-426, 433.
[15]李久青,杜翠薇.腐蚀试验方法及监测技术[M].北京:中国石化出版社, 2007.LI J Q, DU C W. Corrosion Test Methods and Monitoring Techniques[M]. Beijing:China Petrochemical Press, 2007.
基本信息:
DOI:10.19289/j.1004-227x.2025.11.006
中图分类号:TG174.4
引用信息:
[1]徐接旺,崔学军,金永清,等.热镀锌铝镁合金钢板黑色微弧氧化工艺及耐蚀性研究[J].电镀与涂饰,2025,44(11):34-40.DOI:10.19289/j.1004-227x.2025.11.006.
基金信息: